

LATEST EDITION

IANDWRITTEN NOTES

RAJASTHAN PUBLIC SERVICE COMMISSION

प्रारंभिक परीक्षा हेतु

भाग-6

विज्ञान एवं प्रौद्योगिकी

RAS

(Rajasthan Administrative Service)

प्रारंभिक परीक्षा हेतु

RAJASTHAN PUBLIC SERVICE COMMISSION

भाग - 6

विज्ञान एवं प्रौद्योगिकी

प्रस्तावना

प्रिय पाठकों, प्रस्तुत नोट्स "RAS (Rajasthan Administrative Service) Pre." को एक विभिन्न अपने अपने विषयों में निपुण अध्यापकों एवं सहकर्मियों की टीम के द्वारा तैयार किया गया है / ये नोट्स पाठकों को **राजस्थान लोक सेवा आयोग (RPSC)** द्वारा आयोजित करायी जाने वाली परीक्षा "Rajasthan State and Subordinate Services Combined Competitive Exams" भर्ती परीक्षा में पूर्ण संभव मदद करेंगें /

अंततः सतर्क प्रयासों के बावजूद नोट्स में कुछ कमियों तथा त्रुटियों के रहने की संभावना हो सकती है। अतः आप सूचि पाठकों का सुझाव सादर आमंत्रित हैं।

प्रकाशकः

INFUSION NOTES

जयपुर, 302017 (RAJASTHAN)

मो : 01414045784, 8233195718

ईमेल : contact@infusionnotes.com

वेबसाइट : http://www.infusionnotes.com

Order Link - https://bit.ly/ras-pre-notes

WhatsApp Link- https://wa.link/6r99q8

Contact Us - 8233195718, 9694804063,7014366728,8504091672

मृत्य : ₹

संस्करण : नवीनतम (2022)

विज्ञान एवं प्रौद्योगिकी

1. दैनिक जीवन में विज्ञान के मूलभूत तत्व	1
 भौतिक विज्ञान रसायन विज्ञान जीव विज्ञान 	
• जाव विशास 2. रक्तसमूह एवं Rh कारक	123
3. आहार एवं पोषण (Food and Nutrition)	144
4. स्वस्थ्य देखभाल :- संक्रामक, असंक्रामक एवं पशुजन्य रोग	153
• पादप कार्यिकी (Plant Physiology)	
5. कम्प्यूटर्स, सूचना एवं संचार प्रौद्योगिकी	188
6. रक्षा प्रौद्योगिकी	220
7. अंतरिक्ष प्रौद्योगिकी एवं उपग्रह	231
8. नैनो प्रौद्योगिकी	251
9. जैव प्रौद्योगिकी एवं अनुवांशिक – अभियांत्रिकी	261

10.पर्यावरणीय एवं पारिस्थितिकीय परिवर्तन एवं इनके प्रभाव	276
11. जैव विविधता, प्राकृतिक संसाधनों का संरक्षण एवं	
संधार्णीय विकास	276
12.कृषि विज्ञान	277
• राजस्थान में उद्यानिकी	
13.विज्ञान एवं प्रौद्योगिकी विकास राजस्थान के विशेष सन्दर्भ में	284

अध्याय - 1

दैनिक जीवन में विज्ञान के मूलभूत तत्व

• भौतिक विज्ञान

भौतिकी विज्ञान की वह शाखा हैं जिसके अंतर्गत दृव्य तथा ऊर्जा और उसकी परस्पर क्रियाओं का अध्ययन किया जाता हैं।

- मापन
- भौतिक राशियाँ- भौतिकी के नियमों को जिन्हें राशियों के पदों में व्यक्त किया जाता हैं, उन्हें भौतिक राशियां कहते हैं :जैसे - लम्बाई, बल, चाल, वस्तु का द्रव्यमान, घनत्व इत्यादि । भौतिक; राशिया दो प्रकार की होती हैं - अदिश और सदिश ।
- अदिश राशियां- जिन भौतिक राशियों के निरूपण के लिए केवल परिमाण की आवश्यकता होती हैं, किन्तु दिशा की कोई आवश्यकता नहीं होती, उन्हें अदिश राशि कहा जाता हैं। द्रव्यमान, चाल, समय, दूरी, ऊर्जा, आवेश, विद्युत धारा, विभव इत्यादि अदिश राशि के उदाहरण हैं।
- सिदश राशि- जिन भौतिक राशियों के निरूपण के लिए परिमाण के साथ-साथ दिशा की भी आवश्यकता होती हैं, उन्हें सिदश राशि कहा जाता हैं। बल, वेग, भार, त्वरण, विस्थापन इत्यादि सिदश राशि के उदाहरण हैं।
- भौतिकी के नियमों को समय, घनत्व, बल, ताप तथा
 अन्य भौतिक राशियों द्वारा व्यक्त किया जाता हैं।

मापन की इकाइयाँ (Units of Measure)

 भौतिक विज्ञान में लम्बाई, द्रव्यमान एवं समय के लिए तीन मूलभूत इकाइयाँ प्रयुक्त होती हैं । अन्य इकाइयाँ इन्हीं तीनों मौलिक इकाइयों से बनी है। माप की इकाइयाँ दो प्रकार की होती है - मूल इकाई और व्युत्पन्न इकाई ।

मूल मात्रक/इकाई (Fundamental Units) -किसी भौतिक राशि को व्यक्त करने के लिए कुछ ऐसे मानकों का प्रयोग किया जाता हैं जो अन्य मानकों से स्वतंत्र होते हैं, इन्हें मूल मात्रक कहते; जैसे - लम्बाई, समय और दृव्यमान के मात्रक क्रमशः मीटर, सेकेण्ड एवं किलोग्राम मूल इकाई हैं।

व्युत्पन्न मात्रक / इकाई (Derived Units) – किसी भौतिक राशि को जब दो या दो से अधिक मूल इकाइयों में व्यक्त किया जाता हैं, तो उसे व्युत्पन्न इकाई कहते है जैसे बल, दाब, कार्य एवं विभव के लिए क्रमशः न्यूटन, पास्कल, जूल एवं वोल्ट व्युत्पन्न मात्रक हैं।

- मात्रक पद्धतियाँ (System of Units) भौतिक राशियों के मापन के लिए निम्नलिखित चार पद्धतियां प्रचलित हैं -
- i. **CGS पद्धति (Centimetre Gram Second System)** इस पद्धति में लम्बाई, द्रव्यमान तथा समय के मात्रक क्रमशः सेंटीमीटर, ग्राम और सेकण्ड होते हैं । इसलिए इसे Centimeter Gram Second या CGS पद्धति कहते हैं । इसे फ्रेंच या मीट्रिक पद्धति भी कहते हैं ।
- ii. FPS पद्धिति (Foot Pound Second System) -इस पद्धिति में लम्बाई, दृव्यमान तथा समय के मात्रक क्रमशः <mark>फुट, पा</mark>उण्ड़ और सेकण्ड़ होते हैं। इसे ब्रिटिश पद्धित भी कहते हैं।
- iii. MKS पद्धिति (Metre Kilogram Second System) – इस पद्धिति में लम्बाई, दृव्यमान और समय के मात्रक क्रमशः मीटर, किलोग्राम और सेकण्ड होते हैं।
- iv. अंतर्राष्ट्रीय मात्रक पद्धति (System International S.I. Units) –सन् 1960 ई. में अन्तर्राष्ट्रीय माप-तौल के अधिवेशन में SI को स्वीकार किया गया, जिसका पूरा नाम Le Systeme International d'Unites हैं । वास्तव में, यह पद्धति MKS पद्धति का ही संशोधित एवं परिवर्द्धित (improved and extended) रूप हैं । आजकल इसी पद्धति का प्रयोग किया जाता हैं । इस पद्धति में सात मूल मात्रक तथा दो सम्पूरक मात्रक (Supplementary units) हैं ।

SI के सात मूल (Seven Fundamental Units) निम्नलिखित हैं: -

- i. लम्बाई (Length) का मूल मात्रक मीटर (Meter) - SI में लम्बाई का मूल मात्रक मीटर हैं I I मीटर वह दूरी हैं, जिसे प्रकाश निर्वात् में 1/299792458 सेकण्ड़ में तय करता हैं I
- ii. **द्रव्यमान** (Mass) का मूल मात्रक किलोग्राम (Kilogram) & फ्रांस के सेवरिस नामक स्थान पर माप - तौल के अंतर्राष्ट्रीय (International Bureau of weight and Measurement-IBWM) में सुरक्षित रखे प्लेटिनम - इरीडियम मिश्रधातु के बने हुए बेलन के द्रव्यमान को मानक किलोग्राम कहते हैं। इसे संकेत में किग्रा (kg) लिखते हैं।
- iii. समय का मूल मात्रक सेकेण्ड- सीजियम 133 परमाणु की मूल अवस्था के दो निश्चित ऊर्जा स्तरों के बीच संक्रमण से उत्पन्न विकिरण के 9192631770 आवर्तकालों की अवधि को । सेकेण्ड कहते हैं । आइंस्टीन ने अपने प्रसिद्ध सापेक्षता का सिद्धांत (Theory of Relativity) में समय को चतुर्थ विमा (Fourth dimension) के रूप में प्रयुक्त किया हैं ।
- iv. विद्युत् धारा (Electric Current) & यदि दो लम्बे और पतले तारों को निर्वात में । मीटर की दूरी पर एक -दूसरे के समानान्तर रखा जाए और उनमें ऐसे परिमाण की समान विद्युत धारा प्रवाहित की जाए जिससे तारों के बीच प्रति मीटर लम्बाई में 2X10-7 न्यूटन का बल लगने लगे तो विद्युत् धारा के उस परिमाण को । एम्पियर कहा जाता हैं । इसका प्रतीक A हैं।
 - v. **ताप (Temperature)** का मूल मात्रक (Kelvin)
 जल के त्रिक बिंदु (triple point) के ऊष्मागतिक ताप के 1/273.16 वें भाग कों केल्विन कहते हैं । इसका प्रतीक K होता हैं ।
- vi. ज्योति तीव्रता (Luminous Intensity) का मूल मात्रक (Candela) - किसी निश्चित दिशा में किसी प्रकाश स्त्रोंत की ज्योति - तीव्रता । कैण्डेला तब की जाती हैं, जब यह स्त्रोंत उस दिशा में 540X10¹² हर्ट्ज का तथा 1/683 वाट/स्टेरेडियन तीव्रता का एकवर्णीय प्रकाश (monochromatic) उत्सर्जित करता हैं । यदि घन कोण के अन्दर प्रति

सेकण्ड़ । जूल प्रकाश ऊर्जा उत्सर्जित हो, तो उसे । वाट/स्टेरेडियन कहते हैं ।

vii. **पदार्थ की मात्रा** (Amount of Substance) का मूल मात्रक (Mole) - एक मोल, पदार्थ की वह मात्रा हैं, जिसमें उसके अवयवी तत्वों (परमाणु, अणु, आदि) की संख्या 6-023 X 10²³ होती हैं। इस संख्या को ऐवागाड़ों नियतांक (Avogadro's Constant) कहते हैं।

SI के दो सम्पूरक मात्रक (Supplementary Units) हैं -

- i. रेडियन
- ii. स्टेरेडियन

रेडियन (Radian) - किसी वृत्त की त्रिज्या के बराबर लम्बाई के चाप द्वारा उसके केन्द्र पर बनाया गया कोण एक रेडियन होता है। इस मात्रक का प्रयोग समतल पर बने कोण (Plane angles) को मापने के लिए किया जाता हैं।

स्टेरेडियन (Steradian) - किसी गोले की सतह पर उसकी त्रिज्या के बराबर भुजा वर्गाकार क्षेत्रफल द्वारा गोले के केन्द्र पर बनाए गए घन कोण को । स्टेरेडियन कहते हैं । यह ठोसीय कोणों (Solid angles)को मापने का मात्रक हैं।

मूल मात्रक (Fundamental Units)

भौतिक राशि (Physical Quantity)	SI मात्रक/इकाई (SI Unit)	प्रतीक/संके त (Symbol)
लंबाई (Length)	मीटर (Metre)	М
द्रव्यमान (Mass)	किलोग्राम (Kilogram)	Kg
समय (Time)	सेकंड(Second)	S

विद्युत- धारा(Electric Current)	एम्पियर(Amper e)	A
ताप (Temperatur)	केल्विन (Kelvin)	K
ज्योति-तीव्रता (Luminous Intensity)	केंडेला(Candela)	Cd
पदार्थ की मात्रा substance)	मोल(Mole)	mol

अत्यधिक लंबी दूरियों को मापने में प्रयोग किए जाने वाले मात्रक

खगोलीय इकाई (Astronomical Unit- A.U.)
 यह दूरी का मात्रक हैं। सूर्य और पृथ्वी के बीच की मध्य दूरी (mean distance)
 खगोलीय इकाई कहलाती हैं।

1 A.U. = 1.495 X 10" Metres

- प्रकाश वर्ष (Light Yearly) यह दूरी का मात्रक है। एक प्रकाश वर्ष निर्वात् में प्रकाश के द्वारा एक वर्ष में चली गयी दूरी हैं, जो 9-46 X 10¹⁵ मी. के बराबर होती हैं।
- पारसेक (Parsec) = Parallax Second यह
 दूरी मापने की सबसे बड़ी इकाई है (1 Parsec
 = 3.08 X 10¹⁶m) लम्बाई/दूरी के मात्रक:-

। किलोमीटर (km)	= 1000 मी.
। मील (Mile)	= 1.60934 किमी.
। नाविकमील (NM)	= 1.852 किमी.
। खगोलीय इकाई	= 1.495 X 10" मी.
। प्रकाश वर्ष (ly)	= 9.46 X 10 ¹⁵ मी. =
	48612 A.U.
। पारसेक (Parsec)	= 3.08X10 ¹⁶ मी. =
	3.26 ly
	OTEC

द स की घात	पूर्व प्रत्यय	प्रतीक (Symbol)	दस की घात	पूर्व प्रत्यय (Prefix)	प्रतीक (Symbol)
10 ¹⁸	एक्सा(exa)	E	10 ⁻¹⁸	एटो (atto)	а
10 ¹⁵	पेटा (peta)	Pz	10 ⁻¹⁵	फेम्टो(femto)	f
10 ¹²	टेरा (tera)	T	10 ⁻¹²	पीको(pico)	p
10 ⁹	गीगा(giga)	G	10 ⁻⁹	नैनो (nano)	n
10 ⁶	मेगा (mega)	М	10 ⁻⁶	माइको (micro)	u
10 ³	किलो (kilo)	K	10 ⁻³	मिली (milli)	m
10 ²	हेक्टो (hecto)	h	10-2	सेंटी (centi)	С
10 ¹	डेका (deca)	da	10 ⁻¹	डेसी (deci)	d

• कार्य, शक्ति एवं ऊर्जा-

कार्य (Work)- वह भौतिक क्रिया है, जिसमे किसी वस्तु पर बल लगाकर उसे बल की दिशा में विस्थापित किया जाता हैं। किसी वस्तु पर किए गए कार्य की माप, वस्तु पर आरोपित बल तथा बल की दिशा में वस्तु के विस्थापन के गुणनफल के बराबर होती है, अर्थात् कार्य अदिश राशि है तथा इसका एस. आई. मात्रक जूल है। । जूल = । न्यूटन। मीटर

अतः कार्य = बल x बल की दिशा में विस्थापन

शक्ति-

किसी मशीन अथवा किसी कर्ता के द्वारा कार्य करने की समय दर को उसकी शक्ति या सामर्थ्य (Power) कहते हैं अर्थात्

सामर्थ्य =
$$\frac{\overline{\Phi 14}}{\overline{H 14}}$$
 या $P = \frac{W}{T}$

शक्ति को जूल/सेकण्ड या वाट में मापते है। शक्ति का व्यवहारिक मात्रक अश्व शक्ति (Horse Power या HP) है तथा । HP = 746 वाट साधारण मनुश्य की सामर्थ्य 0.05 HP से 0.1 HP होती है । कार्य और ऊर्जा की भांति शक्ति भी एक अदिश राशी है। इसका विमीय सूत्र [ML²T⁻³] है |

ऊर्जा-

किसी वस्तु की कार्य करने की क्षमता को उस वस्तु की ऊर्जा (Energy) कहते हैं ।

- CGS पद्धति में ऊर्जा का मात्रक अर्ग(Erg) होता है।
- MKS और SI पद्धित में ऊर्जा का मात्रक जूल होता है। I जूल, I न्यूटन मीटर या Ikgm²/s² के बराबर होता है।
- वाट-घंटा (Watt-Hour)- प्रति सेकेण्ड एक जूल कार्य संपन्न होने पर इसे । वाट कहते हैं।
 1 वाट घंटा = । जूल का कार्य × । घंटा = । वाट ×(60×60)से.
 =3600 जूल= 3.6×10³जूल
 - किलोवाट घंटा(Kilowatt Hour)

। किलोवाट घंटा = । किलोवाट × । घंटा =1000 वाट × 3600से. = 3.6 × 10⁶ जल

यांत्रिक ऊर्जा- यांत्रिक क्रिया द्वारा प्राप्त ऊर्जा यांत्रिक ऊर्जा कहलाती है। जैसे- गिरता हुआ पत्थर, दबी हुई स्प्रिंग आदि में यांत्रिक ऊर्जा उत्पन्न होती है।

यांत्रिक ऊर्जा दो प्रकार की होती है।

(a) गतिज ऊर्जा- RAS. Mains- 2016 किसी गतिशील वस्तु मे उसकी गति के कारण कार्य करने की जो क्षमता होती हैं, उसे वस्तु की गतिज ऊर्जा कहते हैं। इसका मात्रक जूल होता हैं।

गतिमान वस्तु की गतिज ऊर्जा

$$KE = \frac{1}{2} mv^2 = \frac{1}{2m} (mv)^2 = KE = \frac{p^2}{2m}$$

जहाँ, m कण का द्रव्यमान तथा P = mv, कण का संवेग हैं।

(b)स्थितिज ऊर्जा

वस्तुओं में उनकी विशेष

स्थिति अथवा विकृत अवस्था (विकृति) के कारण जो ऊर्जा होती हैं, उसे स्थितिज ऊर्जा (Potential Energy) कहते हैं। इसे U से प्रदर्शित करते हैं तथा इसका मात्रक जूल होता हैं।

ऊर्जा संरक्षण का नियम-

कर्जा न तो उत्पन्न की जा सकती है और न ही नष्ट यह केवल एक रूप से दूसरे रूप में परिवर्तित की जा सकती हैं। इसे ही कर्जा संरक्षण का नियम (Low of Conservation of Energy) कहते हैं। यान्त्रिक कर्जा = गतिज कर्जा + स्थितिज कर्जा

*भौतिक राशियों के विमीय सूत्र एवं मात्रक-

भौतिक राशि	प्रतीक	विमा	मात्र क	टिप्पणी
कार्य	W	[ML ² T ⁻²]	J	W=f.d
गतिज ऊर्जा	K.E.	[ML ² T ⁻²]	J	K.E.= 1/2mv ²

ध्वनि तरंगे, वायु में उत्पन्न तरंगे, भूकंप तरंगे, स्प्रिंग की तरंगे आदि |

ध्वनि तरंग का बनना :-

- जब वस्तु आगे पीछे तेजी से कम्पन करती है तब हवा में सम्पीडन और विश्लन की एक श्रेणी बनकर ध्वनि तरंग बनाती है। ध्वनि तरंग का संचरण घनत्व परिवर्तन का संचरण है।
- ध्वनि तरंगें यांत्रिक तरंगें हैं , इनके संचरण के लिए माध्यम (हवा , पानी , स्टील) की आवश्यकता होती है ।
- यह निर्वात में संचरित नहीं हो सकती है।
- चंद्रमा या बाह्य अंतरिक्ष में ध्वनि नहीं सुनाई देती , क्योंकि ध्वनि तरंग के संचरण के लिए माध्यम की आवश्यकता होती है । जबकि चंद्रमा या बाह्य अंतरिक्ष में वायुमंडल नहीं होता । अतः निर्वात में ध्वनि संचरित नहीं होती ।

2.अयांत्रिक तरंगे या विद्युत चुम्बकीय तरंगे (Non-mechanical waves or Electromagnetic waves) -

संचरण के लिये किसी प्रकार के माध्यम की आवश्यकता नहीं होती है, अयांत्रिक तरंगे या वैद्युत चुम्बकीय तरंगे कहलाती है, जैसे: प्रकाश तरंगे, रेडियो तरंगे, एक्स तरंगे।

- अयांत्रिक तरंगे निर्वात में भी गति कर सकती है।
- विद्युत चुम्बकीय तरंगे अनुप्रस्थ प्रकार की होती है।
- विद्युत चुम्ब्किय तरंगो के संचरण के समय विद्युत क्षेत्र तथा चुम्बकीय क्षेत्र भी गति करते है, इन क्षेत्रों के संचरण की दिशा उन तलों के लंबवत होती है, जिनमे यह स्थित होते हैं।
- प्रकाश, माइक्रोवेळ्न, एक्स-रे आदि विद्युत चुम्बकीय तरंगो के उदाहरण है।
- विद्युत चुम्बकीय तरंगों की तरंगदेध्य 10-14 मीटर से लेकर 104 मीटर तक होती है, अतः तरंगदेध्यें के आधार पर इन्हें हम विशेष नाम देते हैं, जैसे-लगभग 400 नैनोमीटर से 750 नैनोमीटर तक तरंगदेध्यें को 'दृश्य प्रकाश' कहा जाता है।

- 750 नैनोमीटर से ज्यादा तरंगदैर्ध्य वाली विद्युत चुम्बकीय तरंगो को 'अवरक्त प्रकाश' तथा 400 नैनोमीटर से कम तरंगदैर्ध्य वाली तरंगो को 'पराबैंगनी किरण' कहते हैं। अवरक्त तरंगो का प्रयोग 'रात्रि दृष्टि उपकरणों' में तथा टीवी रिमोट में भी किया जाता हैं।
- विद्युत चुम्बकीय तरंगो का ही एक विशेष प्रकार रेडियो तरंगे होती है, जिनका उपयोग रेडियो संचार में होता है।
- कॉस्मिक किरणें विद्युत चुम्बकीय तरंगे नही होती है, बिल्क वे उच्च ऊर्जा वाले आवेशित कणों से बनी होती है।

तरंगदेध्य के बढ़ते क्रम में विद्युत चुम्बकीय तरंगो का नामकरण -

तरंगदेध्य बढ़ता है

गामा , X-, पराबैंगनी , दृश्य , अवरक्त,

माइक्रोवेब रेडियो

किरणें किरणें किरणें प्रकाश तरंगे

आवृति बढ़ती है

- रडार (Radar-रेडियो डिटेक्शन एंड रैंजिंग), जिनका उपयोग जलयानो या वायुयानो की निगरानी करने में किया जाता है, उनमे भी अति उच्च आवृति की रेडियो तरंगो का ही प्रयोग होता है ।
- क्रिस्टलों की संरचना जानने एवं मानव शरीर के अन्दर के अवयवों के चित्र खीचने में X किरणों का प्रयोग किया जाता है।

Question :- सामान्य टी.वी. रिमोट कन्ट्रोल में उपयोग की जाने वाली तरंगें होती हैं : -(RAS-Pre-2018)

- (1) x-किरणें
- (2) परा-बेंगनी किरणें
- (3) अवरक्त किरणें
- (4) गामा किरणें Ans(3) अवरक्त किरणें

• सीट ध्वनि अवशोषक गुण रखने वाले पदार्थों की बनायी जाती है।

ध्वनि का विवर्तन (Diffraction of sound)

 जब ध्विन तरंगों के संचरण के मार्ग में, ध्विन की तरंगदेंध्य की कोटि (लगभग । मी.) का अवरोध आ जाता है तो ध्विन तरंगे इस अवरोध के किनारों से मुड़कर आगे की ओर संचरण करने लगती है, यह घटना ध्विन का विवर्तन कहलाती है ।

स्टेथोस्कोप:- यह एक चिकित्सा यंत्र है जो मानव शरीर के अन्दर हृदय और फेफड़ों में उत्पन्न ध्वनि को सुनने में काम आता है। हृदय की धड़कन की ध्वनि स्टेथोस्कोप की रबर की नली में बारम्बार परावर्तित या बहु परावर्तन के कारण डॉक्टर के कानों में पहुँचती है।

Question :- स्टेथोस्कोप में, रोगी की दिल की धड़कन की ध्वनि डॉक्टर के कानों तक पहुँचती है- (RAS-Pre-2021)

- (1) ध्वनि के बहु अपवर्तन द्वारा
- (2) ध्वनि के ध्रुवण द्वारा
- (3) ध्वनि के बहु विवर्तन द्वारा
- (4) ध्वनि के बहु परावर्तन द्वारा Ans.(4) ध्वनि के बहु परावर्तन द्वारा

श्रव्यता का परिसर :- मनुष्य में श्रव्यता का परिसर 20 Hz से 2000 Hz तक होता है । 5 वर्ष से कम आयु के बच्चे तथा कुत्ते 25 KHz तक की ध्वनि सुन लेते हैं ।

आवृति के आधार पर तरंगों के प्रकार-

श्रव्य तरंगे (Audible waves)-20कम्पन/सेकेंड(20 हट्जी) से 20,000 कंपन/सेकेंड(20,000 हट्जी) की आवृति वाली तरंगो को मनुष्य के कान सुन सकते हैं। अतः इन्हें श्रव्य तरंगे कहा जाता है।

अवश्रव्य ध्वनि (Infrasonic sound) :-

- 20 Hz(हट्जी) से कम आवृत्ति की ध्वनियों को अवश्रव्य ध्वनि कहते हैं।
- कम्पन करता हुआ सरल लोलक अवश्रव्य ध्वनि
 उत्पन्न करता है।
- अपश्रव्य तरंगो को मनुष्य के कान नही सुन सकते है।
- अपश्रव्य तरंगे बहुत बड़े आकार के स्त्रोतों से उत्पन्न की जाती है।
- गैण्डे 5 Hz की आवृत्ति की ध्वनि से एक दूसरे से सम्पर्क करते हैं।
- हाथी तथा व्हेल अवश्रव्य ध्वनि उत्पन्न करते हैं।
- भूकम्प प्रघाती तरंगों से पहले अवश्रव्य तरंगें पैदा करते हैं जिन्हें कुछ जन्तु सुनकर परेशान हो जाते हैं।

पराश्रव्य ध्वनि या पराध्वनि :-

- 20,000 हट्र्ज या 20 KHz से अधिक आवृत्ति की
 ध्विनयों का पराश्रव्य ध्विन या पराध्विन कहते हैं।
- मनुष्य के कान पराश्रव्य ध्विन को नहीं सुन सकते है
- कुछ जानवर जैसे कुत्ते , डॉलफिन , चमगादड़ , पॉरपॉइज़ (शिंशुमार) तथा चूहे पराध्वनि सुन सकते हैं ।
- कृत्ते तथा चूहे पराध्वनि उत्पन्न करते हैं।

श्रवण सहायक युक्ति :- यह बैटरी चालित इलेक्ट्रॉनिक मशीन है जो कम सुनने वाले लोगों द्वारा प्रयोग की जाती है । माइक्रोफोन ध्वनि को विद्युत संकेतों में बदलता है जो एंप्लीफायर द्वारा प्रवर्धित हो जाते हैं । ये प्रवर्धित संकेत युक्ति से स्पीकर को भेजे जाते हैं । स्पीकर प्रवर्धित संकेतों को ध्वनि तरंगों में बदलकर कान को भेजता है जिससे साफ सुनाई देता है ।

उपेक्षणीय होगा। विवर्तन प्रकाश के तरंग प्रकृति की पुष्टि करता है। ध्वनि तरंगे अवरोधो से आसानी से मुड जाती है और श्रोता तक पहुँच जाती है।

प्रकाश तरंगो का ध्रुवण (Polarisation of Light Waves) –

प्रकाश तरंगे एक प्रकार की विद्युत चुम्बकीय तरंगे हैं जिनमें विद्युत व चुम्बकीय क्षेत्र एक दूसरे के लम्बवत् होते हैं व तरंगे के संचरण की दिशा के लम्बवत् तलों में कम्पन करते हैं प्रकाश के संचरण के लिए विद्युत कम्पन ही मुख्य रूप में उत्तरदायी होते हैं चूंकि प्रकाश तरंगे अनुप्रस्थ तरंगे हैं अतः ये विद्युत कम्पन तरंग संचरण की दिशा के लम्बवत् होते हैं। जब ये कम्पन तल में स्थित हर दिशा में यादृच्छ रूप से वितरित होते हैं तो ऐसी तरंग को अध्ववित तरंग और यदि विद्युत कम्पन तल में सभी दिशाओं में समान रूप से वितरित न होकर एक ही दिशा में हो तो प्रकाश तरंगों को ध्रुवित तरंगे कहते हैं।

वस्तुओं का रंग (Colour of Objects) -

प्रकाश किरणें जब वस्तुओं पर पडती है तो वे वस्तु से परावर्तित होकर देखने वाले की आँखो में प्रवेश करती है और वस्तु दिखाई देने लगती है। वस्तुएं प्रकाश का कुछ भाग परावर्तित करती हैं तथा कुछ भाग अवशोषित करती है, प्रकाश का परावर्तित भाग ही वस्तुओं का रंग निर्धारित करता है। जैसे गुलाब की पतियाँ हरे रंग को तथा पंखुडियाँ लाल प्रकाश को परावर्तित करने के कारण हरी एवं लाल दिखती है। शेष प्रकाश को अवशोषित कर लेती है। यदि गुलाब को हरे प्रकाश में देखा जाय तो पत्तियां हरी एवं लाल दिखती है। शेष प्रकाश को अवशोषित कर लेती है। यदि गुलाब को हरे प्रकाश में देखा जाय तो पत्तियां हरी एवं पंखुडियां काली दिखाई देती है वह उस रंग के प्रकाश को परावर्तित तथा शेष रंगो के प्रकाश को अवशोषित कर लेती है।

रंगो का मिश्रण -

नीले, लाल एवं हरे रंगो को उपयुक्त मात्रा में मिलाकर अन्य रंगों को प्राप्त किया जा सकता है। इन्हें प्राथमिक रंग कहते हैं, रंगीन टेलीविजन में इन्ही का प्रयोग किया जाता है। पीला, मैंजेंटा, पीकॉक ब्लू को द्वितीयक रंग कहते है। जिन दो रंगों को परस्पर मिलाने से सफेद प्रकाश उत्पन्न होता है

उन्हें पूरक रंग (Complementary Colour) कहते है।

आँख (Eye) – RAS Mains.-2021

शरीर का महत्वपूर्ण अंग एक कैमरे की तरह कार्य करता है। बाहरी भाग दृष्टिपटल नामक कठोर अपारदर्शी झिल्ली से ढकी रहती है। दृष्टिपटल के पीछे उभरा हुआ भाग कार्निया कहलाता है। (नेत्रदान में कार्निया ही निकाली जाती है।) कार्निया के पीछे नेत्रोद (aqueous Humour) नामक पारदर्शी द्रव भरा होता है।

कार्निया के पीछे स्थित पर्दा आइरिस आँख में प्रवेश करने वाले प्रकाश को नियंत्रित करता है जो कम प्रकाश में फैल एवं अधिक प्रकाश में सिकुड जाता है। इसी लिए बाहर से कम प्रकाश वाले कमरे में प्रवेश करने पर कुछ देर तक हमें कम दिखाई देता है। पुतली के पीछे स्थित लेंस द्वारा वस्तु का उल्टा, छोटा तथा वास्तविक प्रतिबिम्ब रेटिना पर बनता है। आँख में स्थित पेशियाँ लेंस पर दबाव डाल कर पृष्ठ की वक्रता को घटाती है। जिससे फोकस दूरी भी कम ज्यादा होती रहती है। एक्टकपटल (Choroid) प्रकाश का अवशोषण कर लेता है और प्रकाश का परावर्तन नहीं हो पाता है।

किसी वस्तु से चलने वाली प्रकाश किरणें कार्निया तथा नेत्रोद से गुजरने के पश्चात लेंस पर पडती है, लेंस से अपवर्तित होकर काँचाभ द्रव से होती हुई रेटिना पर पडती है रेटिना पर वस्तु का उल्टा एवं वास्तविक प्रतिबिम्ब बनाता है। प्रतिबिम्ब बनने का संदेश दृश्य तंत्रिकाओं द्वारा मस्तिक तक पहुँचता है और वस्तु दर्शक को दिखायी देने लगती है।

आँख की संमजन क्षमता (Power of Accommodation) –

स्पष्ट देखने के लिए आवश्यक है कि वस्तु से चलने वाली किरणें रेटिना पर ही केन्द्रित हो, किरणों के आगे पीछे केन्द्रित होने पर वस्तु दिखयी नहीं देगी। वस्तु को धीरे - धीरे आँख के समीप लायें व फोकस दूरी को उतनी ही रखे तो वस्तु से चलने वाली किरणें रेटिना के पीछे फोकस होने लगेगी और वस्तु दिखायी नहीं देगी। वस्तु को ज्यो ज्यो आँख के पास लाते है पक्ष्माभिकी पेशियाँ, लेंस की फोकस दूरी को कम करके, ऐसे समायोजित कर देती है कि वस्तु का प्रतिबिम्ब रेटिना पर ही बनता रहें। इस प्रकार

- समूह के सभी तत्वों में संयोजकता इलेक्ट्रोनो की संख्या समान होती है | यद्यपि समूह में ऊपर से नीचे जाने पर कक्षाओं की संख्या बढती जाती है |
- आवर्त के सभी तत्वों में संयोजकता इलेक्ट्रोनो की संख्या भिन्न-भिन्न होती है, लेकिन इसमें कक्षाओं की संख्या समान होती है ।
- आवर्त सारणी में तत्वों की स्थिति से उनकी रासायनिक अभिक्रियाशीलता का पता चलता है।
- आधुनिक आवर्त सारणी में आवर्त की संख्या 7 होती है एवं वर्ग की संख्या 9 होती है। वर्ग । से VII तक दो उपवर्गों A एवं B में बंटे हैं, इस प्रकार उपवर्गों सहित कुल वर्गों की संख्या 18 है ।
- प्रत्येक आवर्त का प्रथम सदस्य क्षार-धातु है, और अंतिम सदस्य कोई अक्रिय गैस(Inert Gas)। सिर्फ पहले आवर्त का पहला सदस्य हाइड्रोजन है जो अपवाद है।

आधुनिक आवर्त सारणी की उपलब्धियां-

- आधुनिक आवर्त सारणी ने मेंडेलीव आवर्त सारणी की सभी कमियों को दूर कर दिया।
- समस्थानिकों को एक ही साथ एक ही स्थान पर रखा गया | वास्तव में आवर्त सारणी में एक ही स्थान प्राप्त करने के कारण ही इन तत्वों को 'समस्थानिक' कहा गया |

विद्युत ऋणात्मकता- किसी तत्व की परमाणु की वह क्षमता, जिससे वह साझेदारी की इलेक्ट्रोन जोड़ी को अपनी ओर खींचती है, उसे उस तत्व की विद्युत ऋणात्मकता कहते है |

फ्लोरीन की विद्युत ऋणात्मकता सबसे ज्यादा होती है।

निष्क्रिय गैसों का गलनांक निम्न होता है, वही वर्ग IV A के तत्वों का गलनांक उच्चतम होता है |

• <u>धातु, अधातु एवं उपधातु</u>

धात्एं (Metals)

 सामान्यतः धातुएं विद्युत की सुचालक होती है तथा
 अम्लों सें क्रिया करके हाइड्रोजन गैस विस्थापित करती है। धातुएं सामान्यतः चमकदार, अद्यातवर्ध्य

एवं तन्य होती है। **पारा एक ऐसी धातु है जो द्रव** अवस्था में रहती है।

INFUSION NOTES

- पृथ्वी धातुओं की सबसे बड़ी स्रोत है तथा धातुएं पृथ्वी को भूपर्पटी में मुक्त अवस्था या यौगिक के रूप में पायी जाती है। भूपर्पटी में मिलने वाली धातुओं में एल्युमीनियम, लोहा, कैल्सियम का क्रमशः प्रथम, द्वितीय एवं तृतीय स्थान है।
- ज्ञात तत्वों में 78 प्रतिशत से अधिक संख्या धातुओं की है, जो आवर्त सारणी में बाई ओर स्थित है।

खनिज (Minerals) - भूपर्पटी में प्राकृतिक रूप से पाये जाने वाले तत्वों या यौगिकों को खनिज कहते है।

अयस्क (Ores) - खनिज जिनसे धातुओं को आसानी से तथा कम खर्च में प्राप्त किया जा सकता है उन्हें अयस्क कहते हैं। इसलिए सभी अयस्क खनिज होते हैं, लेकिन सभी खनिज अयस्क नहीं होते हैं, अतः सभी खनिजों का उपयोग धातु प्राप्त करने में नहीं किया जा सकता।

गैंग (Gangue) - अयस्क में मिले अशुद्ध पदार्थ को गैंग कहते है।

फ्लक्स (Flux) - अयरक में मिले गैंग को हटाने के लिए बाहर से मिलाए गये पदार्थ को फ्लक्स कहते है।

अमलगम (Amalgum) - पारा अमलगम का आवश्यक अवयव होता है। पारा के मिश्र धातु अमलगम कहलाते हैं। निम्न धातुएँ अमलगम नहीं बनाते हैं- लोहा, प्लैटिनम, कोबाल्ट, निकेल एवं टंगस्टन आदि।

एनीलिंग (Annealing) - इस्पात को उच्च ताप पर गर्म कर धीरे-धीरे ठण्डा करने पर उसकी कठोरता घट जाती है। इस प्रक्रिया को एनीलिंग कहते है।

लोहे में जंग लगने के लिए ऑक्सीजन व नमी आवश्यक है। जंग लगने से लोहे का भार बढ़ जाता है। जंग लगना एक रासायनिक परिवर्तन का उदाहरण है। लोहे में जंग लगने में बना पदार्थ फेरसोफेरिक ऑक्साइड (Fe₂O₃) होता है। यशदलेपन, तेल लगाकर, पेंट करके, एनोडीकरण या MFUSION NOTES
WHEN ONLY THE BEST WILL DO
लोहे को जंग लगने से बचाया जा

इनकी तलना मे

मिश्रधातु बनाकर लोहे को जंग लगने से बचाया जा सकता है।

यशदलेपन- लोहे एवं इस्पात को जंग से सुरक्षित रखने के लिए उन पर जस्तै की पतली परत चढ़ाने की विधि यशदलेपन कहते है।

इस्पात- लोहा एवं 0.5% से 1.5% तक कार्बन की मिश्रधातु इस्पात कहलाती है।

रटेनलेस इस्पात- यह लोहे व कार्बन के साथ क्रोमियम तथा निकेल की मिश्रधातु होती है। यह जंग प्रतिरोधी अथवा धब्बा होता है तथा इसका उपयोग शल्य उपकरण तथा बर्तन बनाने में किया जाता है। कोबाल्ट इस्पात- इसमें कोबाल्ट की उपस्थिती के कारण विशिष्ट चुम्बकत्व का गुण आ जाता है। इसका उपयोग स्थायी चुम्बक बनाने में किया जाता है।

मैंगनीज इस्पात- मैंगनीज युक्त इस्पात दृढ़, अत्यंत कठोर एवं टूट-फूट रोधी होता है। इसका उपयोग अभेद तिजोरी, हेलमेट आदि बनाने में किया जाता है।

धातुओं के भौतिक गुण-

- **धात्विक चमक** धातुएँ अपने शुद्ध रूप में चमकदार होती है।
- कठोरता- धातुएँ सामान्यतः कठोर होती है। प्रत्येक धातु की कठोरता अलग-अलग होती है, परन्तु कुछ धातुएँ(क्षारीय धातु- लीथियम, सोडियम, पोटेशियम) इतनी मुलायम होती है कि इन्हें चाकू से काटा जा सकता है। मर्करी सामान्य ताप पर द्रव अवस्था में पाई जाने वाली धातु है।
- आघातवर्ध्यता- धातुओं को पीटकर चादर बनाई जा सकती है| इस गुण को आघातवर्ध्यता कहते है | जैसे- सोना,चाँदी
- तन्यता- धातु को पतले तार के रूप में खींचने की क्षमता को तन्यता कहते हैं | सोना सर्वाधिक तन्य धातु है| । ग्राम सोने से 2km लम्बा तार बनाया जा सकता है|
- ऊष्मा चालकता- धातुएँ ऊष्मा की सुचालक होती है। सिल्वर और कॉपर ऊष्मा के सबसे अच्छे चालक है, जिनमे सिल्वर की चालकता कॉपर से ज्यादा है।

- इनकी तुलना में लेड और मर्करी ऊष्मा के कुचालक है |
- गलनांक- धातुओं का गलनांक उच्च होता है। (गैलियम और सीजियम धातुओं का गलनांक बहुत कम है। यदि इनको हथेली पर रखा जाये तो यह पिघलने लगते है।)
- विद्युत चालकता- सामान्यतः धातुएँ विद्युत की चालक होती है। विद्युत का सर्वोत्तम चालक सिल्वर और कॉपर में होता है। इनके बाद क्रमशः सोना, एल्यूमिनियम तथा टंगस्टन का स्थान आता है।

धातुओं के रासायनिक गुण-

दहन (Burning) - वायु की उपस्थिति में किसी पदार्थ के जलने पर पदार्थ की ऑक्सीजन के साथ अभिक्रिया होती है।

लगभग सभी धातुएँ ऑक्सीजन के साथ मिलकर संगत धातु के ऑक्साइड बनाती है|

जैसे- $2Cu + O_2 \rightarrow 2CuO$

कॉपर

कॉपर

ऑक्साइड

धातु ऑक्साइड की प्रकृति क्षारीय होती है। लेकिन एल्यूमिनियम ऑक्साइड जैसे कुछ धातु ऑक्साइड अम्लीय तथा क्षारकीय दोनों प्रकार के व्यवहार प्रदर्शित करते है।

जल से अभिक्रिया (Reaction with Water)-

- जल से अभिक्रिया करके धातुएँ हाइड्रोजन गैस तथा धातु ऑक्साइड उत्पन्न करती है। जो धातु ऑक्साइड जल में घुलनशील होते है, वे जल में घुलकर धातु हाइड्रॉक्साइड प्रदान करते है। सभी धातुएँ जल के साथ अभिक्रिया नहीं करती।
- धातु + जल → धातु ऑक्साइड + हाइड्रोजन धातु ऑक्साइड + जल → धातु हाइड्रॉक्साइड पोटैशियम एवं सोडियम जैसी धातुएँ ठंडे जल के साथ तेजी से अभिक्रिया करती है। यह तीव्र एवं ऊष्माक्षेपी अभिक्रिया होती है।

2K + 2H2O → 2KOH + H2 + ऊष्मीय ऊर्जा 2Na +2H2O → 2NaOH + H2 + ऊष्मीय ऊर्जा

लेड, कॉपर, सिल्वर तथा गोल्ड जैसी धातुएँ जल के साथ बिल्कुल अभिक्रिया नही करती है।

अम्लों के साथ अभिक्रिया (Reaction with Acids)-

धातुएँ अम्ल के साथ अभिक्रिया करके लवण तथा हाइड्रोजन गैस बनाती है

धातु + तनु अम्ल → लवण + हाइड्रोजन

- नाइट्रिक अम्ल से धातुओं की अभिक्रिया में हाइड्रोजन गैस उत्सर्जित नहीं होती, क्योंकि HNO₃ (नाइट्रिक अम्ल) एक प्रबल ऑक्सीकारक होता है, जो उत्पन्न H₂ कों ऑक्सीकृत करके जल में बदल देता है एवं स्वयं नाइट्रोजन के किसी ऑक्साइड(N₂O, NO, NO₂) में अपचयित हो जाता है। लेकिन मैग्नीशियम(Mg) और मैगनीज(Mn) अति तनु HNO₃ के साथ अभिक्रिया कर गैस उत्सर्जित करते हैं।
- कॉपर तनु HCI से अभिक्रिया नही करता है|

धातुओं की सक्रियता श्रेणी-

धातुओं की क्रियाशीलता को अवरोही क्रम में व्यवस्थित करने पर जो सूची प्राप्त होती है, धातुओं की सक्रियता श्रेणी है।

सिक्रयता श्रे<mark>णी : धातुओं की सापे</mark>क्ष अभिक्रियाशीलता

K	-\	पोटैशियम	सर्वाधिक उच्च
Na	- "	सोडियम	-अभिक्रियाशील
Ca	-	कैल्सियम	धातुएँ
Mg	-	मैग्नीशियम	
Al	-	_एल्यूमिनियम	
Zn	-	ज़िंक	मध्यम
Fe	-	आयरन	अभिक्रियाशील
Sn	-	टिन	धातुएँ
Pb	-	_ लेड	
H	-	— हाइड्रोजन	निम्न
Cu	-	कॉपर	अभिक्रियाशील
Hg	-	मर्करी	धातुएँ
Ag	-	सिल्वर	सबसे कम
Au	-	_ गोल्ड	अभिक्रिया-शील

संक्षारण (Corrosion) - जब कोई धातु अपने आस-पास अम्ल, आर्द्रता आदि के संपर्क में आती है तो वह संक्षारित होती है। संक्षारण के कारण कार के ढांचे, पुल, लोहे की रेलिंग, जहाँज तथा धातु विशेषकर लोहे से बनी वस्तुओं को बहुत क्षति होती है।

- सिल्वर वायु में उपस्थित सल्फर से अभिक्रिया करके सिल्वर सल्फाइड बनाता है, जिसकी काली परत सिल्वर के ऊपर जमा हो जाती है।
- लम्बे समय तक आर्द्र वायु में रहने पर लोहे पर भूरे रंग के पदार्थ की परत चढ़ जाती है, जिसे ज़ंग कहते है।
- कॉपर वायु में उपस्थित आर्द्र कार्बन डाइऑक्साइड से क्रिया करके हरे रंग का कॉपर कार्बोनेट बनाता है, जिसकी हरी परत कॉपर पर जमा हो जाती है।

संक्षारण से सुरक्षा-

- धातु पर पेंट करके, तेल लगाकर, ग्रीज़ इत्यादि की परत चढ़ाकर
- यशदलेपन(लोहे की वस्तुओं पर जस्ते की परत चढ़ाकर)
- एनोडीकरण
- क्रोमियम लेपन
- मिश्रधातु बनाकर

कुछ प्रमुख धातुएँ एवं उनका निष्कर्षण-

तांबा (Copper):- तांबा(Cu) d ब्लॉक का तत्व(संक्रमण तत्व) है, जो प्रकृति में मुक्त तथा संयुक्त दोनों अवस्थाओं में पाया जाता है।

निष्कर्षण- कैल्कोपाइराइट(CuFeS₂) तांबे का मुख्य अयरक होता है, जिससे तांबे का निष्कर्षण किया जाता है। कॉपर पाइराइट अयस्क का सांद्रण 'फेन प्लवन विधि' द्वारा करते हैं, फिर इसे परावर्तनी भट्टी में गर्म करके, शोधन करके तांबा प्राप्त किया जाता है।

उपयोग-

- विद्युत लेपन तथा विद्युतमुद्रण में तांबे का उपयोग करते हैं।
- क्यूप्रिक आर्सेनाइट का उपयोग कीटनाशक व वर्णक के रूप में किया जाता है।

- बिजली के तार, मुद्राएँ, मिश्र धातुएँ बनाने में तांबे का उपयोग करते हैं।
- ताम्र संदूषण से बचाने के लिए पीतल के बर्तनों पर टिन धातु की परत चढ़ाई जाती है।

Question :-ताम्र संदूषण से बचाने के लिए पीतल के बर्तनों पर सामान्यतः किस धातु की परत चढ़ाई जाती है ?

(RAS-Pre-2018)

- (1) राँगे की (टिन)
- (2) जस्ते की
- (3) एल्युमिनियम की
- (4) सीसे की

Ans(I) टिन

चांदी (Silver):- प्रकृति में चांदी मुक्त अवस्था तथा संयुक्त अवस्था में अपने खनिजो(हॉर्न सिल्वर, सिल्वर ग्लांस) में पाई जाती है।

निष्कर्षण- चांदी का निष्कर्षण इसके मुख्य अयस्क अर्जेंटाइट(Ag₂S) से 'सायनाइट विधि' द्वारा किया जाता है।

गुण-

- यह सफेद चमकदार धातु है |
- चांदी की विद्युत चालकता एवं ऊष्मा चालकता सभी ज्ञात तत्वों में सर्वाधिक है।
- चांदी वायु, ऑक्सीजन व जल के साथ कोई अभिक्रिया नहीं करता।
- चांदी में आघातवर्द्धनीयता तथा तन्यता का गुण बहुत अधिक होता है।

उपयोग-

- सिक्के, आभूषण, बर्तन बनाने में
- चाँदी की पन्नी, भस्म का प्रयोग औषधि के रूप में दन्त चिकित्सा में किया जाता है।
- विद्युत लेपन, दर्पण की पॉलिश आदि करने में चाँदी का उपयोग किया जाता है।

सोना(Gold):- प्रकृति में सोना मुक्त व संयुक्त दोनों अवस्थाओं में पाया जाता है | संयुक्त अवस्था में सोना क्वार्टज़ के रूप में पाया जाता है। निष्कर्षण- सोने के मुख्य अयस्क कैलेवराइट, सिल्वेनाइट, ऑरोस्टिबाइट तथा ऑरीक्यूपाइड है, जिनसे सोना प्राप्त किया जाता है।

गुण-

- सोना सभी धातुओं में सर्वाधिक तन्य तथा आघातवर्ध्य धातु है, जिसके मात्र ।ग्राम से । वर्ग मी. की चादर बनाई जा सकती है।
- सोना ऊष्मा एवं विद्युत का सुचालक होता है |
- हवा, नमी, आदि का सोने पर कोई प्रभाव नही पड़ता।
- मर्करी से क्रिया करके यह अमलगम बनाता है।

उपयोग-

- आभूषण, सिक्के, बर्तन आदि बनाने में |
- गठिया, ट्यूबरकुलोसिस, कैंसर आदि की दवाइयां बनाने में सोने का उपयोग किया जाता है।
- सोने के कुछ लवणों का उपयोग फोटोग्राफी में किया जाता है।

लोहा(Iron):- लोहा पृथ्वी के गर्भ में दूसरा सर्वाधिक पाया जाने वाला धातु है। लोहा संयुक्त अवस्था में अपने अयस्को हेमेटाइट, मैग्नेटाइट, सिडेराइट, लिमोनाइट आदि में पाया जाता है। निष्कर्षण- लोहे का निष्कर्षण इसके प्रमुख अयस्क हेमेटाइट व मैग्नेटाइट से वात्या भट्टी में किया

गुण-

जाता है|

- लोहा भूरे रंग की क्रिस्टलीय धातु होती है।
- लोहे में चुम्बकीय गुण पाया जाता है।
- अन्य धातुओं की भांति लोहे में आघातवर्द्धनीयता तथा तन्यता का गुण पाया जाता है|
- लोहा तनु अम्लो में घुल जाता है तथा हाइड्रोजन गैस मुक्त करता है।

लीथियम (Lithium):-

- यह एक मुलायम, सफेद चांदी जैसी धातु है।
- आदर्श परिस्थितियों में यह सर्वाधिक हल्की धातु है,
 जिसे चाक़ु से काटा जा सकता है |
- यह अत्यधिक क्रियाशील व ज्वलनशील होती है। अतः
 इसे खनिज तेलों में डुबोकर रखा जाता है।
- लीथियम के लवणों का प्रयोग आर्द्रताग्राही, वायु शुद्धिकरण, वेल्डिंग, राकेट ईधन आदि में किया जाता है।

•	
INFUSION NOTES WHEN ONLY THE BEST WILL DO	
WHEN ONLY THE BEST WILL DO)

	WHEN ON
	कपड़ों एवं कागज को विरंजित करने में
19- ब्रोमीन (Br)	रंग उद्योग में
	औषधि बनाने में
	टिंक्चर गैस बनाने में
	प्रतिकारक के रूप में
20- आयोडीन (1)	टिंक्चर आयोडीन बनाने में
	रंग उद्योग में
	कीटाणुनाशक के रूप में
21- सल्फर (S)	कीटाणुनाशक के
	रूप में
	बारूद बनाने में औषधि के रूप में
(0)	
22- फॉस्फोरस (P)	लाल फॉस्फोरस- दियासलाई बनाने मे
	श्वेत फॉस्फोरस-चूहे मारने में
	फॉस्फोरस ब्रांज बनाने में
23- हाइड्रोजन (H₂)	अमोनिया के उत्पादन में
	कार्बनिक यौगिक के निर्माण में
24- द्रव हाइड्रोजन	रॉकेट ईंधन के रूप
	में

25- भारी जल(D₂0)	न्यक्लियर
23- AIRI GM(D20)	~
	प्रतिक्रियाओं में
	डयूट्रेटेड यौगिक के
	निर्माण में निर्माण में
	।वामाण म
26- हाइड्रोक्लोरिक अम्ल	क्लोरीन बनाने में
(HCI)	
(1101)	अम्लराज बनाने में
	·
	रंग बनाने में
	क्लोराइड लवण के
	निर्माण में
	10101101 01
27- सल्फ्यूरिक अम्ल	स्टोरेज बैटरी में
(H ₂ SO ₄)	
	प्रयोगशाला में
	प्रतिकार के रूप में
	·
	रंग-उत्पादन में
	पेट्रोलियम के
	शुद्धिकरण में
	र्गाद्धकरण म
28- अमोनिया (NH3)	आइसफैक्ट्री में
28- अमोनिया (NH₃)	आइसफैक्ट्री में
ON NO	आइसफॅक्ट्री में प्रतिकारक के रूप में
28- अमोनिया (NH3)	प्रतिकारक के रूप में
ON NO	
THE BEST W	प्रतिकारक के रूप में रेयॉन बनाने में
29- नाइट्रस ऑक्साइड	प्रतिकारक के रूप में रेयॉन बनाने में
THE BEST W	प्रतिकारक के रूप में रेयॉन बनाने में
29- नाइट्रस ऑक्साइड	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में
29- नाइट्रस ऑक्साइड (N2O)	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂)	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂)	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂)	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂)	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂) RAS. 2013	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में धातु निष्कर्षण में वैल्डिंग के कार्य में
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂) RAS. 2013	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में धातु निष्कर्षण में वैल्डिंग के कार्य में निष्क्रिय वातावरण
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गैंस (CO+N₂) RAS. 2013	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में धातु निष्कर्षण में वैल्डिंग के कार्य में
29- नाइट्रस ऑक्साइड (N ₂ 0) 30- प्रोड्यूसर गॅस (CO+N ₂) RAS. 2013 31- वाटर गॅस (CO+H ₂) RAS. 2013	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में धातु निष्कर्षण में वैल्डिंग के कार्य में निष्क्रिय वातावरण तैयार करने में
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂) RAS. 2013 31- वाटर गॅस (CO+H₂) RAS. 2013	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में धातु निष्कर्षण में वैल्डिंग के कार्य में निष्क्रिय वातावरण तैयार करने में जल को शुद्ध करने
29- नाइट्रस ऑक्साइड (N ₂ 0) 30- प्रोड्यूसर गॅस (CO+N ₂) RAS. 2013 31- वाटर गॅस (CO+H ₂) RAS. 2013	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में धातु निष्कर्षण में वैल्डिंग के कार्य में निष्क्रिय वातावरण तैयार करने में जल को शुद्ध करने में, औषधि-निर्माण
29- नाइट्रस ऑक्साइड (N₂O) 30- प्रोड्यूसर गॅस (CO+N₂) RAS. 2013 31- वाटर गॅस (CO+H₂) RAS. 2013	प्रतिकारक के रूप में रेयॉन बनाने में शल्य-चिकिसा में भट्टी गर्म करने में सस्ते ईंधन के रूप में धातु निष्कर्षण में वैल्डिंग के कार्य में निष्क्रिय वातावरण तैयार करने में जल को शुद्ध करने

आविष्कार लेक्लांश ने किया था। अतः इसे लेक्लान्शे सेल भी कहते है।

शुष्क सेल के केंद्र में कार्बन(ग्रेफाइट) की एक छड़ होती है, जो मैंगनीज डाइऑक्साइड(MnO2) और कार्बन पाउडर के पेस्ट से घिरी होती है, इसमे कार्बन छड़ कैथोड की तरह कार्य करती है।

इस सेल में अमोनियम क्लोराइड और ज़िंक क्लोराइड के नमीयुक्त मिश्रण को विद्युत अपघट्य की तरह प्रयोग करते हैं, विद्युत अपघट्य को ज़िंक के पात्र में भरा जाता है। यह ज़िंक पात्र एनोड की तरह कार्य करता है।

कैथोड पर मैंगनीज +4 से +3 ऑक्सीकरण अवस्था में अपचयित हो जाता है| शुष्क सेल का विभव 1.5 V होता है|

मर्करी सेल (Mercury Cell)-

मर्करी सेल कम विद्युत मात्रा की आवश्यकता वाले यंत्रो यथा- घड़ी, श्रवण यंत्रो आदि में प्रयुक्त करने के लिए उपयुक्त होता है। इन्हें बटन सेल भी कहा जाता है।

इस से<mark>ल में ज़िंक-मर्करी अमल</mark>गम एनोड तथा HgO एवं कार्बन पेस्ट कैथोड का कार्य करता है। KOH और 2nO का पेस्ट विद्युत अपद्यट्य होता है। इस सेल का विभव 1.35 V होता है।

द्वितीयक सेल (Secondary Cell) - गैल्वेनिक सेल जिन्हें उपयोग करने के बाद विपरीत दिशा में विद्युत धारा के प्रवाह द्वारा पुन: आवेशित कर फिर से प्रयोग में लाया जा सकता हो, द्वितीयक सेल कहते हैं। द्वितीयक सेल को संचायक सेल भी कहते हैं। द्वितीयक सेल रिचार्जेबल होते हैं। इनमे विद्युत ऊर्जा रासायनिक ऊर्जा के रूप में भंडारित हो जाती है। द्वितीयक सेल के उदाहरण- सीसा संचायक बैटरी, निकेल-कैडिमयम बैटरी।

सीसा संचायक सेल (Lead Storage Battery)-इसमें एनोड लेड का बना होता है तथा कैथोड लेड डाइऑक्साइड(PbO₂) का एक ग्रिड होता है। इस बैटरी में 35% सल्फ्यूरिक अम्ल (H₂SO₄) का विलयन विद्युत अपद्यन्य का कार्य करता है। इस बैटरी का प्रयोग सामान्यत: वाहनों एवं इन्वर्टर में किया जाता है। इस बैटरी के आवेशित होने पर सल्फ्यरिक एसिड की खपत होती है।

निकेल-कैडमियम बॅटरी (Nickel-Cadmium Battary)-

इनमे निकेल हाइड्रोक्साइड का कैथोड तथा कैडिमयम का एनोड होता है। पोटेशियम हाइड्रोक्साइड विद्युत अपघट्य के रूप में प्रयुक्त होता है। यह रिचार्जेबल बैटरी है, जिसका विद्युत अपघट्य द्रव अथवा विलयन नहीं होता । इसका प्रयोग सामान्यतः शेवर, टॉर्च लाइट आदि में करते है।

• अम्ल, क्षार और लवण

1. अम्लः-

- अम्ल एक यौगिक है, जिसमें हाइड्रोजन आयन पाए जाते हैं, विलयन में H+(aq), उसकी अम्लीय विशेषता के लिए उत्तरदायी होते हैं।
- ब्रोस्टेड-लोवरी सिद्धांत के अनुसार, अम्ल एक ऐसा प्रकार है जो अन्य प्रकारों को प्रोटोन दे सकता है।
- हाइड्रोजन आयन अकेले नहीं पाए जाते हैं, बिल्कि वे पानी के अणुओं के साथ संयोजन के बाद मौजूद होते हैं। अतः, पानी में घोलने पर केवल धनात्मक आयनों के रूप में हाइड्रोनियम आयन (H30+) प्राप्त होते हैं।
- हाइड्रोजन आयनों की मौजूदगी एसिड को प्रबल और अच्छा विद्युत् अपघट्य बनाती है।

प्रबल अम्लः-

प्रबल अम्ल के उदाहरण हैं: हाइड्रोक्लोरिक अम्ल सल्फ्यूरिक अम्ल, नाइट्रिक अम्ल इत्यादि।

कमजोर अम्लः-

उदाहरण हैं:- एसेटिक अम्ल, फोर्मिक अम्ल, कार्बोनिक अम्ल इत्यादि।

अम्ल सामान्यतः स्वाद में खट्टे और संक्षारक होते हैं।

• सूचक :

- हल्दी, लिटमस, गुड़हल, इत्यादि प्राकृतिक रूप से पाए जाने वाले सूचकों में से कुछ हैं।
- लिटमस को थैंलोफाइटा समूह से संबंधित एक पौधे लाइकेन से निकाला जाता है। आसुत जल में इसका रंग बैंगनी होता है। जब इसे अम्लीय विलयन में रखा जाता है तो इसका रंग लाल हो जाता है और

जब इसे क्षारीय विलयन में रखा जाता है, तो इसका रंग नीला हो जाता है।

- वे विलयन, जिनमें लिटमस का रंग या तो लाल या नीले में परिवर्तित नहीं होता है उदासीन विलयन कहलाते हैं। ये पदार्थ न तो अम्लीय होते हैं न ही क्षारीय।
- गंध सूचक, कुछ पदार्थ ऐसे होते हैं, जिनकी गंध अम्लीय या क्षारीय मीडियम में परिवर्तित हो जाती है।

अम्ल के प्रयोग :-

- हमारे आमाशय में उपस्थित हाइड्रोक्लोरिक अम्ल भोजन के पाचन में मदद करता है।
- विटामिन ८ या एस्कॉर्बिक अम्ल शरीर के लिए आवश्यक पोषक तत्व प्रदान करता है।
- कार्बोनिक अम्ल का उपयोग कार्बोनेटेड पेय पदार्थ और उर्वरक बनाने में किया जाता है।
- एक परिरक्षक सिरका, एसिटिक एसिड का तनुरूप है।
- कमरे के तापमान पर एसिटिक किण्वन द्वारा डूबे हुए अल्कोहल किण्वन द्वारा वाइन खमीर और एलबी एसीटेट बैक्टीरिया का उपयोग करके गन्ने के रस से उच्च गुणवत्ता वाला गन्ने का मूल पेय बनाया गया था।
- सिरका अनिवार्य रूप से पानी में एसिटिक (एथेनोइक) एसिड का एक तनु विलयन है।
- सिरका का उपयोग घरेलू उपयोग और खाद्य उद्योग दोनों के लिए एक परिरक्षक के रूप में किया जाता है।
- सिरका में बेंजोइक एसिड नहीं होता है।
- एसिटिक एसिड बैक्टीरिया द्वारा एथेनॉल के ऑक्सीकरण द्वारा उत्पादित किया जाता है, और,
- अधिकांश देशों में, वाणिज्यिक उत्पादन में एक डबल किण्वन शामिल होता है जहां खमीर द्वारा शर्करा के किण्वन द्वारा इथेनॉल का उत्पादन किया जाता है।
- सल्फ्यूरिक अम्ल का उपयोग उर्वरकों, पेंट, सिंथेटिक फाइबर इत्यादि के निर्माण में किया जाता है।
- नाइट्रिक अम्ल का उपयोग एक्वा रेजिया को तैयार करने में किया जाता है, जिसका उपयोग सोने और चांदी जैसी कीमती धातुओं के शुद्धीकरण में किया जाता है।
- बोरिक अम्ल का उपयोग आंखों को धोने के लिए किया जाता है

- किसी अम्ल की क्षारकता को अम्ल के एक अणु में मौजूद आयनीकृत होने वाले हाइड्रोजन (H+) आयनों की संख्या के रूप में परिभाषित किया जाता है।
- अम्ल युक्त कार्बोक्जिलिक अम्ल के लिए. हम हाइड्रोजन परमाणुओं की संख्या की गणना नहीं करते हैं, बल्कि कार्बोक्जिल समूह (अर्थात्)COOH की संख्या देखते हैं।

Question :- निम्नलिखित में से कौन सा कथन सही है?

- A. गन्ने का रस सिरका बनाने के लिए किण्वित होता है।
- B. सिरका में एसिटिक एसिड होता है।
- C. बेंजोइक अम्ल सिरका में मौजूद अम्ल होता है।
- D. सिरका का उपयोग परिरक्षक के रूप में किया जाता है।

(RAS-Pre-2016)

- 1. A,C,D
- 2. A,B,D
- 3. A,B,C
- 4. B,C,D Ans.(2) . A,B,D

रोज़मर्रा की जिंदगी में उपयोग होने वाले अम्ल:-अम्ल दो अलग-अलग स्रोतों से प्राप्त होते हैं। वे कार्बिनिक या खनिज अम्ल हो सकते हैं। सभी अम्लों में कुछ समान विशेषतायें होती हैं।

अम्ल के स्त्रोत	अम्ल का नाम
विनेगर (सिरका), मसालेदार सब्जियाँ	एसीटिक अम्ल
खट्टे फल	साइट्रिक अम्ल
अंगूर, इमली, करोंदे	टार्टरिक अम्ल
खट्टा दूध	लैक्टिक अम्ल
सेब	मैलिक अम्ल

- नायलॉन-6, 6 का उपयोग ब्रश, ब्रिसल्स (Bristle), कपड़ा, चादर, जुराबें, स्वेटर आदि बनाने के लिए किया जाता है।
- नायलॉन-2 जैव निम्नीकृत रेशा होता है
- पॉलियामाइड से बना सिंथेटिक पॉलिमर के एक परिवार के लिए नायलॉन एक सामान्य पदनाम
- यह नॉन-सी इल्यूलोज फाइबर से बनाया गया है।
 नायलॉन एक थर्माप्लास्टिक रेशमी सामग्री है
 जिसे फाइबर, फिल्म या आकृतियों में पिघला
- संसाधित किया जा सकता है। ० कई अलग-अलग संपत्ति भिन्नताओं को प्राप्त करने के लिए नायलॉन पॉलिमर को विभिन्न प्रकार
- के एडिटिव्स के साथ मिश्रित किया जा सकता है।

Question :- निम्नलिखित में से कौन सा एक गैर-सैल्यूलोसी रेशे का उदाहरण है ?

(RAS-Pre-2018)

- (1) रेयोन
- (2) लिनन
- (3) जूट
- (4) नायलॉन

Ans(4) नायलॉन

रेयॉन (Rayon)

- सेल्यूलोज (Cellulose) पौधों में पाए जाने वाला पॉलीसैकराइड (कार्बोहाइड्रेट) होता है।
- रेयान एक पुनर्जीवित सेल्युलोज फाइबर है यह सेलूलोज़ के प्राकृतिक स्रोतों, जैसे लकड़ी और संबंधित कृषि उत्पादों से बनाया जाता है सेल्यूलोज का एक चिपचिपा घोल। विस्कोस रेयान के लिए एक विशिष्ट शब्द - रेकोन विस्कोस प्रक्रिया का उपयोग करके बनाया गया है।
- वह कृत्रिम रेशे जिनके संश्लेषण में सेल्यूलोज का उपयोग किया जाता है, रेयॉन कहलाते हैं।
- कागज या लकड़ी को सैल्यूलोज स्त्रोत के रूप में लेकर इसकी सांद्र, ठंडे सोडियम हाइड्रॉक्साइड व कार्बन डाइऑक्साइड से क्रिया कराई जाती है, उसके बाद इस विलयन को धातु के बेलनों के छिद्रों में से होकर तनु सल्फ्यूरिक अम्ल में गिराया जाता है, जिससे रेयॉन के लंबे-लंबे रेशे प्राप्त हो जाते हैं।

 रेयॉन का उपयोग कपड़ा उद्योग में कालीन आदि बनाने में किया जाता है।

सनी

INFUSION NOTES

- लिनन एक कपड़ा है जो फ्लैक्स प्लांट के सेल्यूलोज फाइबर से बना है।
- लिनन बहुत मजबूत और शोषक है और कपास की तुलना में तेजी से सुख जाता है।
- इन गुणों के कारणं, लिनन गर्म मौसम में पहनने के लिए आरामदायक है और कपड़ों में उपयोग
- के लिए मूल्यवान है।
- जूट एक लंबा, नरम, चमकदार बस्ट फाइबर है
 जो मोटे, मजबूत धागे में काटा जा सकता है।
- यह पौधे के सेल्यूलोज तंतुओं से बनता है।
- यह जीनस कोरस में फूलों के पौधों से उत्पन्न होता है, जो कि मलोव परिवार मालवेसिए में होता है।

साब्न (Soap)

- मुलायम साबुन उच्च वसीय अम्लों के पोटेशियम लवण (कास्टिक पोटाश) होते हैं, इनका प्रयोग स्नान करने में किया जाता है। तथा कड़े साबुन उच्च वसीय अम्लों के सोडियम लवण (कास्टिक सोडा) होते हैं, इनका उपयोग कपड़े धोने में किया जाता है।
- साबुन के निर्माण में एस्टरीकरण की प्रक्रिया प्रयुक्त की जाती है।
- तेल व वसा का क्षारों द्वारा जल अपघटन करने से साबुन बनता है।

डिटरजेन्ट (Detergents)

- ये साबुन से इस मामले में उत्तम है कि Ca⁺, Mg⁺², तथा Fe⁺³ आयन के साथ अद्युलनशील लवण नहीं प्रदान करता है। इसमें लंबी श्रृंखला का हाइड्रोकार्बन होता है।
- कपड़े व बर्तनों को साफ करने वाली डिटरजेन्ट में सल्फोनेट प्रयुक्त होता है।

कांच (Glass)

 काँच विभिन्न क्षारीय धातु के सिलिकेटों का अक्रिस्टलीय मिश्रण होता है। साधारण काँच, सिलिका (SiO2), सोडियम सिलिकेट (Na2SiO3) और कैल्शियम सिलिकेट का ठोस मिश्रण होता है। काँच क्रिस्टलीय संरचना नहीं होती हैऔर न ही उसका कोई निश्चित गलनांक होता है क्योंकि काँच

अक्रिस्टलीय ठोस के रूप में एक अतिशीर्तित द्रव है। कांच का कोई निश्चित रासायनिक सूत्र नहीं होता है, क्योंकि काँच मिश्रण है- यौगिक नहीं। साधारण काँच का औसत संघटन Na2iO2, 4SiO2 होता है। कांच का अनीलीकरण - काँच की वस्तुओं को बनाने के बाद विशेष प्रकार की भट्टियों में धीरे-धीरे ठण्डा करते हैं। इस क्रिया को काँच का अनीलीकरण कहते हैं।

कुछ महत्वपूर्ण बिन्द

- सिल्वर ब्रोमाइड का प्रयोग फोटोग्राफी व फिल्मों में किया जाता है। फोटोक्रोमैटिक कांच सिल्वर ब्रोमाइड की उपस्थिति के कारण धूप में स्वतः काला हो जाता है।
- कुक्स काँच का प्रयोग धूप-चश्मों के लेंस में पराबैगनी किरणों को रोकने में किया जाता है। यह सिरियम ऑक्साइड व सिलिका का बना होता है।
- फोटोग्राफी में स्थायीकरण के लिए सोडियम थायोसल्फेट का उपयोग किया जाता है।
- सिल्वर क्लोराइड को हॉर्न सिल्वर कहा जाता है। इसका उपयोग फोटोक्रोमेटिक काँच में होता है।

सीमेन्ट (Cement)

- सीमेंट जब जल के सम्पर्क में आता है तो इसमें उपस्थित कैल्सियम के सिलिकेट व एल्युमिनेट जल से क्रिया करके कोलाइडी विलयन बनाते हैं। यह कोलाइडी विलयन जम कर कड़ा हो जाता है।
- सीमेन्ट प्रमुख रूप से कैल्सियम सिलिकेटो और ऐल्युमिनियम सिलिकेटों का मिश्रण है जिसमें जल के साथ मिश्रित करने पर जमने का गुण होता है। जल के साथ मिश्रित करने पर सीमेंट का जमना, उसमें उपस्थित कैल्सियम सिलिकेटो और ऐल्युमिनयम सिलिकेटो के जलयोजन के कारण होता हैं।
- सीमेन्ट में 2-5% तक जिप्सम (CaSO4.2H2O) मिलाने का उद्देश्य, सीमेन्ट के प्रारंभिक जमाव को धीमा करना है। सीमेन्ट के धीमें जमाव से उसका अत्यधिक दृढ़ीकरण होता है।
- मिट्टी में क्षारकत्व को घटाने के लिए जिप्सम का उपयोग किया जाता है।
- ब्रिटिश इंजीनियर जोसेफ एस्पडीन ने चूना पत्थर तथा चिकनी मिट्टी से जोड़ने वाला ऐसा नया पदार्थ बनाया जो अधिक शक्तिशाली और जलरोधी था।

उसने उसे पोर्टलैंड सीमेन्ट कहा, क्योंकि यह रंग में पोर्टलैंड के चूना पत्थर जैसा था।

• $CaSO_4, \frac{1}{2}H_2O + 1\frac{1}{2}H_2O \Rightarrow CaSO_4, 2H_2O$ (प्लास्टर ऑफ पेरिस) (जिप्सम)

मोर्टार व कंकरीट (Mortar and Concrete) -जब सीमेंट के साथ बालू व जल मिलाया जाता है तो इस मिश्रण को मोर्टार कहते हैं। इसका उपयोग फर्श आदि बनाने में किया जाता है तथा जब सीमेंट के साथ बालू- जल व छोटे-छोटे कंकड पत्थर मिलाये जाते हैं तो इस मिश्रण को कंकरीट कहते हैं। इसका प्रयोग इमारतों की छतें, पुल व बांध बनाने में किया जाता है।

ईधन (Fuel)

जो पदार्थ जलने पर ऊष्मा व प्रकाश उत्पन्न करते है, ईधन कहलाते हैं। ईधन मुख्यतः तीन प्रकार के होते है-

- ठोस ईंधन (Solid Fuels) ये ईधन ठोस रूप में होते है तथा जलाने पर कार्बन डाईऑक्साइड, कार्बन मोनो ऑक्साइड व ऊष्मा उत्पन्न करते है। लकड़ी, कोयला आदि ठोस ईधनों के उदाहरण है।
- 2. द्रव ईधन (Liquid Fuels)- ये ईधन विभिन्न प्रकार के हाईड्रोकार्बन के मिश्रण से बने होते हैं तथा जलाने पर कार्बन डाईऑक्साइड व जल का निर्माण करते हैं। जैसे- केरोसिन, पेट्रोल, डीजल, एल्कोहल आदि।
- 3. गैस ईधन (Gas Fuels) जिस प्रकार ठोस व द्रव ईधन जलाने पर ऊष्मा उत्पन्न करते है, उसी प्रकार कुछ ऐसी गैस भी है जो जलाने पर ऊष्मा उत्पन्न करती है। गैस ईधन द्रव व ठोस इंधनों की अपेक्षा अधिक सुविधाजनक होते है व पाइपों द्वारा एक स्थान से दूसरे स्थान तक सरलता पूर्वक भेजे जा सकते है। इसके अतिरिक्त गैस ईंधनों की ऊष्मा सरलतापूर्वक नियंत्रित की जा सकती है।
- a. कोल गैस (Coal Gas) कोल गैस में 50% हाइड्रोजन, 35% मिथेन, 10% कार्बन मोनो ऑक्साइड, 5% हाईड्रोकार्बन आदि गैसों का मिश्रण होता है। कोल गैस कोयले के भंजक आसवन के द्वारा बनायी जाती है। यह रंगहीन व

किया जाता है। ऑप्टिकल फाइबर, इमेजेस राउंड कॉर्नर्स को प्रसारित कर सकते हैं।

- लैंड क्रिस्टल ग्लास लैंड ग्लास का अपवर्तक सूचकांक अधिक होता है, अतः इसका उपयोग महंगे कांच के बर्तनों को बनाने के लिए किया जाता है।
- शीशे का निक्षारण ग्लास में हाइड्रोफ्लोरिक अम्ल (एचएफ) डाला जाता है, अतः इसलिए इसे कांच के निक्षारण में उपयोग किया जाता है।

कृषि में रसायन

<u> उर्वरक :-</u> युरिया :-

- यूरिया सबसे अच्छा उर्वरक है क्योंिक यह अमोनिया के बाद केवल कार्बन डाइऑक्साइड छोड़ता है, जिसे पौधों द्वारा ग्रहण कर लिया जाता
- इसमें 46.6% नाइट्रोजन होती है और इससे मिट्री के पीएच में परिवर्तन नहीं आता है।
- Ca(CN)2 और C के मिश्रण को नीट्रोलिम के रूप में जाना जाता है। वाणिज्यिक तौर पर, कैल्शियम नाइट्रेट को नॉर्वेजियन साल्टपीटर के रूप में जाना जाता है।
- उपयुक्त मात्रा में नाइट्रोजनी, फॉस्फेटिक और पोटाश उर्वरकों का मिश्रण, एनपीके उर्वरक कहलाता है।

अजोला :-

- अजोला एक जैव उर्वरक है।
- एक तरफ जहाँ इसे धान की उपज बढ़ती है वहीं ये कुक्कुट, मछली और पशुओं के चारे के काम आता है।
- कुछ देशों में तो लोग इसे चटनी व पकोड़े भी बनाते हैं।
- इससे बायोडीजल तैयार किया जाता है। यहां तक कि लोग इसे अपने घर के ड्रॉइंग रूम को सजाने के लिए भी लगाते हैं।
- अजोला पशुओं (विशेषतःदुधारू पशु) के लिए पौष्टिक आहार है। इसे पशुओं को खिलाने से उनका दुग्ध उत्पादन बढ़ जाता है।

Question :- पशुओं विशेषतः दुधारू गो, के अनुपूरक भोजन के रूप में प्रयुक्त जैव-उर्वरक है-(RAS-Pre-2016)

- 1. अजोटोबॅक्टर
- 2. अजोस्पाइरिलियम
- 3. राईजोबियम
- ५. अजोला

Ans(4) अजोला

कीटनाशक

कीटनाशक रसायन हैं जो फसलों में उपयोग किये जाते हैं, **उदा**. डीडीटी और मैलाथियन

डिफ्थियालोन

गलती से या जानबूझकर उपयोग किये गए स्कंदनरोधी ज़हरों से निरावरण हेतु पालतू जानवरों या मनुष्यों के लिए जहरनाशक के रूप में विटामिन K का सुझाव दिया जाता है और सफलतापूर्वक उसका उपयोग किया जाता है।

दवाओं में रसायन

एनाल्जेसिक (दर्दनाशक) :-

- ये दर्द को कम करते हैं। एस्पिरिन और पेरासिटामोल गैर-मादक दर्दनाशक दवायें हैं।
- एस्पिरिन बुखार को कम करती है, प्लेटलेट के स्कंदन को रोकती है।
- एस्पिरिन एक नॉन-स्टेरायडल एंटी-इंफ्लेमेटरी इग्स (NSAID) है। यह दवाओं की खोज की जाने वाली इस श्रेणी की पहली दवा थी।
- एस्पिरिन, रासायनिक रूप से एसिटाइलसैलिसिलिक एसिड के रूप में जाना जाता है।
- एस्पिरिन मामूली दर्द, दर्द, माइग्रेन सिरदर्द और बुखार से राहत के लिए एक आम दवा है।
- यह भी एक शोथरोधी या रक्त पतले करने वाले पदार्थ के रूप में प्रयोग किया जाता है।
- फेलिक्स हॉफर्मेन एस्पिरिन के आविष्कारक थे।
- नारकोटिक दर्दनाशक दवाओं का उपयोग मुख्य रूप से ऑपरेशन के बाद वाले दर्द, हृदय के दर्द एवं टर्मिनल कैंसर के दर्द और बच्चे को जन्म

<u>अध्याय – 2</u> रक्तसमूह एवं Rh कारक

- "**कार्ल लैंड स्टीनर" ने** सन् 1900 में बताया कि सभी मनुष्यों का Blood Groups एक समान नहीं होता है ।
- मनुष्य का Blood RBC की Cells में पाए जाने वाले Protein, antigen-(Glycoprotein) के कारण भिन्न- भिन्न प्रकार का होता है।

Antigen: ऐसे बाह्य रसायन जो ग्राही के शरीर में हानिकारक प्रभाव डालते हैं । एन्टीजन दो प्रकार के होते हैं

- 1. Antigen A
- 2 Antigen B
- Antibody यह भी प्रोटीन होते हैं ये "Antigen" का विरोध करती है । यह भी दो प्रकार की होती है -
 - (1) Antibodies (a)
 - (2) Antibodies (b)

मनुष्य में रुधिर वर्ग या ABO System रक्त में" Glycoprotein" की उपस्थिति के आधार पर मनुष्य में "4 प्रकार के रुधिर वर्ग पाये जाते हैं।

Blood Group	Antigen	Antibodies
A	A	b
В	В	а
AB	AB	absent
0	absent	ab

Antigen A के साथ सदैव "antibodies b" तथा Antigen B के साथ "antibodies a" होनी चाहिए I

Antigen AB के साथ कोई "Antibodies" नहीं होनी चाहिए यदि ऐसा होगा तो रक्त जम जायेगा ।

"मनुष्य मे रक्ताधान" (Blood Transfusion in human)

Blood Groups		किस वर्ग से रक्त ले सकता है
A	A, AB	A,0
В	B, AB	В,О
AB	AB	A,AB,O,B
0	A, B, AB, O	0

- रक्त आधान के समय दाता में केवल antigen व ग़ाही में antibodies की जाँच की जाती है।
- रुधिर वर्ग A वाले व्यक्ति को रुधिर वर्ग B रक्त वाले व्यक्ति का रुधिर नहीं दिया जा सकता है । यदि ऐसा होगा तो रुधिर ग्रहण करने वाले व्यक्ति में antigen and Antibodies समान हो जायेगा जिससे Blood का अभिश्लेषण [Agglufirmation (चपकना)] हो जायेगा ।
- रक्त के चपकने के कारण Blood Vessels में जमा हो जाएगा और व्यक्ति की मृत्यु हो जाएगी इसीलिए रक्ताधान (खूनचढ़ाना) के समय Blood Groups का मिलान किया जाता है।

Note

"गलत रक्ताधान के समय केवल दाता के रक्त का थक्का बनता है। "रुधिर वर्ग AB में कोई भी Antiboides ना होने के कारण सभी से रक्त ले सकता है अत: इसे "सर्वग्राही" कहते हैं।

Note

"यदि दुर्घटना स्थल पर रक्त जाँच की सुविधा ना हो तो घायल व्यक्ति कों 0 रक्त समूह का रक्त चढ़ाना चाहिए ।"

Rh रक्त समूह प्रणाली :-

(Blood Rh factor)

- इस Antigen की खोज कार्ल लैण्डस्टीनर तथा ए. एस. वेनर ने सन् 1940 में "रीसस बन्दर" में की | इसके RBC में की थी इसीलिए इस antigen का नाम Rh कारक रखा गया यह मनुष्य में भी पाया जाता है
- उस समय से कई अलग-अलग आरएच एंटीजन की पहचान की गई है, लेकिन पहला और सबसे आम, जिसे आरएचडी कहा जाता है, सबसे गंभीर प्रतिरक्षा प्रतिक्रिया का कारण बनता है और Rh विशेषता का प्राथमिक निर्धारक है।
- जिन मनुष्यों के रक्त में Rh factor पाया जाता है उन्हें Rh+ तथा जिनमे नही पाया जाता हैं उन्हें Rh-कहते है |
- यदि Rh⁺ व्यक्ति का Blood, Rh⁻ को दिया जाये तो प्रथम बार कम मात्रा होने पर कोई प्रभाव नहीं पड़ेगा तथा जब दूसरी बार इसी प्रकार रक्ताधान किया गया तो रक्त जमने के कारण व्यक्ति की मृत्यु हो जाती है।

"एरिथ्रोब्लासटोसिस फिटेलिस"

यह Rh कारक से सम्बन्धित रोग है। इससे प्रभावित शिशु की गर्भा. में या जन्म लेने के तुरन्त बाद मृत्यु हो जाती है। इसका कारण "Rh+ve पुरुष का विवाह Rh-ve महिला से हो जाए" पहले बच्चे पर प्रभाव कम पड़ेगा किन्तु बाद के बच्चों पर अधिक प्रभाव पड़ेगा |

Rh f का बच्चे पर प्रभाव -

पिता	माता	बच्चा
Rh+ve	Rh+ve	Rh+ve (Normal)
Rh ^{-ve}	Rh ^{+ve}	Rh+ve (Normal)
Rh ^{-ve}	Rh ^{-ve}	Rh ^{-ve} (Normal)

Note

- "Rh+ve का रक्त Rh-ve कारक पर प्रभावी होता हैं।"
- घाव लगने पर रक्त का थक्का बनाने के लिए निम्न जिम्मेदार होते हैं।
 - o Prothrombin, fibrinogen
 - Platlets
 - Vitamin K and Calcium.

o Fibrine

- **Rh असंगति** तब होती है जब एक गर्भवती महिला का रक्त आरएच-नकारात्मक होता है और भ्रूण में आरएच-पॉजिटिव रक्त होता है।
- Rh असंगतता भ्रूण की लाल रक्त कोशिकाओं को नष्ट कर सकती है, कभी-कभी एनीमिया का कारण बन सकती है जो गंभीर हो सकती है। एनीमिया के सबूत के लिए भ्रूण की समय-समय पर जांच की जाती है।
- Rh असंगति तभी विकसित होती है जब मां Rh हीन होती है और शिशृ Rh सहित होता है।
- Rh असंगति एक ऐसी स्थिति है जो तब विकसित होती है जब एक गर्भवती महिला का Rh हीन रक्त होता है और उसके गर्भ में बच्चे का Rh सहित रक्त होता है।
- यदि मां Rh हीन है, तो उसकी प्रतिरक्षा प्रणाली
 Rh सहित भ्रूण कोशिकाओं का इलाज करती है जैसे कि वे एक विदेशी पदार्थ थे।
- मां का शरीर भ्रूण की रक्त कोशिकाओं के खिलाफ एंटीबॉडी बनाता है। ये एंटीबॉडी प्लेसेंटा के माध्यम से विकासशील बच्चे में वापस जा सकते हैं।
- वे बच्चे के परिसंचारी लाल रक्त कोशिकाओं को नष्ट कर देते हैं।
- यह समस्या उन जगहों पर कम आम हो गई है जो अच्छी प्रसवपूर्व देखभाल प्रदान करती हैं। ऐसा इसलिए है क्योंकि RhoGAM नामक विशेष प्रतिरक्षा ग्लोब्युलिन का नियमित रूप से उपयोग किया जाता है।
- कारण गर्भावस्था के दौरान, अजन्मे बच्चे की लाल रक्त कोशिकाएं प्लेसेंटा के माध्यम से मां के रक्त में जा सकती हैं।

Question :- माता गर्भस्थ शिशु Rh रक्त प्रकार विसंगति की समस्या उत्पन्न हो सकती है, यदि माता....... है एवं उसका गर्भस्थ शिशु...... है। (RAS-Pre-2021)

- I. Rh सहित; Rh हीन
- 2. Rh हीन; Rh सहित
- 3. Rh हीन; Rh हीन

https://bit.ly/ras-pre-notes

जनन ग्रन्थि [Gonad's Gland]

जनन ग्रन्थियाँ जनन कोशिकाओं के निर्माण के अलावा अन्तः स्त्रावी ग्रन्थियों का भी कार्य करती है। प्रजनन अंग प्रजनन क्रिया में प्रत्यक्षरूप से शामिल होते हैं, पुरुष की जनन ग्रन्थि को "वृषण" (Testis) तथा मादा की जनन ग्रन्थि को Ovary कहा जाता हैं।

नर हार्मीन -

नर हार्मोन को "Androgen" कहा जाता है सबसे प्रमुख जनन हार्मोन "टेस्टोस्टीरोन" होता हैं Testosteron को "पौरुष विकास हार्मोन" कहा जाता है। यह Harmon पुरुषों में यौन लक्षणों के लिए जिम्मेदार होता है।

Example – दाढ़ी-मूंछ का आना आवाज का भारी होना

मादा हार्मोन -

मादा हार्मोन को Estrogen कहते हैं। Estrogen Harmon में सबसे प्रमुख हार्मोन "Estradiol" है। यह Harman स्त्रीयों में यौन लक्षणों के लिए जिम्मेदार होता है। आवाज का सुरीलापन

इसके अलावा अण्डाशय <mark>से</mark> अन्य हार्मोन भी निकलते हैं -

1. Progestrone Hormone - यह Harmon "रजस्वला" के लिए जिम्मेदार होता है।

स्त्रियों में लगभग "45 वर्ष" की उम्र में रजोनिवृत्ति की अवस्था आ जाती है। अतः प्रोजेस्ट्रोन का स्राव बन्द हो जाता है।

यह Harman "गर्भधारण" के लिए जिम्मेदार होता है इसके अलावा यह प्रसव पीडा के लिए भी जिम्मेदार होता है।

2. Relaxin Harmon

यह Harmon प्रसव के समय गर्भाशय को फैलाता है जिससे प्रसव आसान हो जाता हैं।

अध्याय - 3

• <u>आहार एवं पोषण (Food and</u> Nutrition)

जीवो में सभी आवश्यक पोषक पदार्थों का अन्तर्ग्रहण जो कि उनकी वृद्धि, विकास, रखरखाव सभी जैव प्रक्रमों को सुचारु रूप से चलाने के लिये आवश्यक है, पोषण कहलाता है।

पोषक पदार्थ

ऐसे पदार्थ जो जीवों में विभिन्न प्रकार के जैविक प्रक्रियाओं के संचालन एवं सम्पादन के लिए आवश्यक होते हैं पोषक पदार्थ कहलाते हैं।

पोषक पदार्थ		
कार्बनिक	अकार्बनिक	
Carbohydrate		
Protein	Minerals	
Fats	Water	
Vitamins	T WILL DO	

कार्बोहाइड्रेट

ये C, H, O के यौगिक है ये शरीर को ऊर्जा प्रदान करते हैं। Igm carbohydrate से 4 cal ऊर्जा प्राप्त होता है। हमारे शरीर की लगभग "50-65%" ऊर्जा आवश्यकता की पूर्ति Carbohydrate से होती है।

carbohydrate कई रूपों में पाये जाते हैं ।

Glucose - चीनी, शहद

Fructose. फलो में

Sucrose - गन्ना चुकन्दर

Starch- आलू, कैला, चावल

Carbohydrate		
Monosaccharid e	Disacchar ide	Polysacchar ide
। या । से अधिक	दो Mono से	यह कई mono

C अणुओं का	बना होता है	से बना होता है
बना होता है ।	1	1
Glucose,	Sucrose	Starch
Fructose		

1. Carbohydrate में CHo में अनुपात जल के समान 2:1 होता है। प्रतिदिन आवश्यकता 450/500 gm

2. स्त्रोत- सभी अनाज, आलु, सकरकन्द, गन्ना, गुड, शहद, चुकन्दर, केला आदि ।

कार्य-

शरीर में ऊर्जा का प्रथम स्त्रोत है। जो प्रमुख होता है। यह वसा में बदल कर संचित भोजन का कार्य करता है। संचित भोज्य पदार्थ के रुप में –

वनस्पतियां (Starch)

जंतुओं (Glycogen)

Glucose <mark>के अणु तत्काल ऊर्जा</mark> प्रदान करते हैं यह DNA and R.N. A का घटक है।

कमी -

शरीर का वजन कम हो जाता है। मांसपेशियों में दर्द तथा थकान महसूस होने लगती। कार्य करने की क्षमता घट जाती है। शरीर में "लीनता ("Dilapidation) आ जाती है। Dilapidation - Repair करने की क्षमता कम होती है।

शरीर में ऊर्जा उत्पन्न करने हेतु " protein " प्रयुक्त होने लगती है।

अधिकता-

वजन में वृद्धि ।

प्रोटीन (Protein)

Protein अत्यन्त जटिल N2 युक्त जटिल पदार्थ है।

Protein का निर्माण लगभग 20 amino acid से मिलकर होता है ।

Protein, C.H.O. व N, P, S से निर्मित होता है। जीवधारियों के शरीर का अधिकांश भाग Protein का बना होता है। Igm protein से 4.Ical ऊर्जा प्राप्त होती है।

प्रतिदिन आवश्यकता के रूप में - 70- 100 gm/Day. होती है।

प्रोटीन के रुप:-

INFUSION NOTES

रक्त में पायी जाने वाली Protien- HB रक्त को जमाने वाली Protein- Prothrombin बाल तथा नाखून में पायी जाने वाली प्रोटीन-किरेटिन

दूध में-

- सफेदी वाली प्रोटीन Casin Protein
- पीलेपन की Protein Karotein Protein

गेंहूँ से रोटी बनाने का गुण वाली Protein -Glutein Protein I हिंडुयों में लचीलापन प्रोटीन के कारण ही आता हैं। शरीर में बनने वाले एंटीबॉडीज तथा एंटीजन प्रोटीन का ही रूप होता है।

DNA and RNA जैसे आनुवंशिक पदार्थ Protein के ही बने होते है ।

प्रोटीन के स्रोत-

इसका मुख्य स्रोत- सोयाबीन व अण्डे की जर्दी अन्य स्रोत - सभी प्रकार की दालें। पनीर, मांस, मछली आदि ।

प्रोटीन के कार्य-

- मानव शरीर का लगभग 15% भाग Protein का होता है।
- Protein शरीर का ढाँचा बनाती है यह शारीरिक वृद्धि एंव विकास के लिए आवश्यक है।
- Protein कोशिकाओ तथा ऊतको का

- विटामिन D की दैनिक मांग-400 I.U. हैं I
- विटामिन D वसा में घुलनशील हैं।

विटामिन E-टोकोफेरॉल

- इसे एन्टीस्टेरीलिटी विटामिन या ब्यूटी विटामिन भी कहा जाता है।
- यह विटामिन त्वचा पर से दाग और झुरियाँ हटाता है।
- अधिक उष्मा से नष्ट हो जाता है।
- विटामिन E की कमी से होने वाला रोग -बॉझपन , गर्भपात, अंगघांत (पोलियो) पेशीयो का कमजोर होना इत्यादि हैं।
- विटामिन E का प्राप्ति स्त्रोत-हरी पतियों, तेल,
 गेहूँ, अण्डे, मॉस, कॉटन बीज तेल हैं।
- दैनिक मांग 30 1.0. हैं 1

विटामिन K -फाइलोक्विनॉन या फ्लेवीनोक्विनॉन

- इसे एन्टी हीमोरेगिक विटामिन भी कहते हैं।
- आंत में पाये जाने वाले सहजीवी जीवाणु इ कॉली द्वारा संश्लेषित होता है।
- मिनेडिऑन कृत्रिम विटामिन K सबसे महत्वपूर्ण होता है।
- प्रोथ्नोम्बिन के निर्माण के लिए आवश्यक हैं।
- विटामिन K की कमी से होने वाले रोग रक्त का थक्का नहीं बनता।
- विटामिन K प्राप्ति स्त्रोत हरी सिब्जियाँ, गाजर,
 टमाटर, लीवर, गोभी, पालक, धिनया, मूली का
 उपरी सिरा, सोयाबिन इत्यादि।
- यह एन्टीबायोटिक्स और सल्फा औषिधियों के लगातार उपयोग से नष्ट हो जाता है।
- दैनिक मांग- 0.001mg

2 जल विलेय विटामिन (B,C)

 यदि शरीर का क्षतिग्रस्त भाग repair नहीं हो रहा हो तो उस व्यक्ति को विटामिन बी

- कॉमप्लेक्स दिया जाता है ये कई प्रकार के होते हैं।
- विटामिन 'बी' के अब तक 18 घटकों की खोज की जा चुकी है।
- विटामिन 'बी' को सम्मिलित रूप से बी-कॉम्पलेक्स कहा जाता है।
- विटामिन B के खोजकर्ता मैकुलन हैं।
- विटामिन-बी प्रोटीन के पाचन हेतु आवश्यक होता है इसीलिए इसे प्रोटीन भी कहते है। यह रक्त में ऐसी शक्ति उत्पन्न करता है कि जिससे संक्रामक रोग नहीं हो पाते है।

Question :निम्न में से कौन से विटामिन्स वसा में घुलनशील हैं?

(RAS-Pre-2021)

- (1) A एवं C
- (2) A एवं D
- (3) B12 एवं D
- (4) C एवं E

Ans(2) A एवं D

विटामिन BI- थाइमिन-

- इसे एन्टी बेरी-बेरी कारक या एन्टी न्यूराइटिक तथा एन्यूराइन भी कहते हैं।
- बेरी-बेरी, पेरीफेरल तंत्रिका तंत्र, आहार नाल और कार्डियोवेस्कुलर तंत्र को प्रभावित करता है।
- कमी से होने वाले रोग- बेरी-बेरी, वरनिक्स एनसिफेलोपेथी, अपच तथा कब्ज हो जाती है।
- विटामिन B₁ प्राप्ति स्त्रोत चावल, गेहूँ, अण्डे और मछली इत्यादि हैं।
- Note:- बेरी-बेरी एक सिंहली शब्द है जिसका अर्थ है अत्यधिक दुर्बलता ।
- सन 1897 में ईज्कमान ने बेरी-बेरी रोग का पता लगाया था।
- दैनिक मांग 1.4-1.7mg हैं 1

विटामिन B2 - राइबोफलेविन-

<u>अध्याय - ५</u> <u>स्वस्थ्य देखभाल :- संक्रामक,</u> असंक्रामक एवं पश्जन्य रोग

रोग विज्ञान (Pathology) – रोग उत्पन्न करने वाले कारकों की पहचान, उनकी संरचना व रोगों के निदान से सम्बन्धित अध्ययन।

रोग-सामान्य अवस्था में कोई परिवर्तन जो कि असहजता या अक्षमता या स्वास्थय में क्षति उत्पन्न करता है।

जूनोटिक रोग :-

- जूनोटिक रोग एक बीमारी या संक्रमण है जो प्राकृतिक रूप से जानवरों से मनुष्यों या मनुष्यों से जानवरों में फैल सकता है।
- मानव रोगजनकों में से 60% से अधिक मूल रूप से जूनोटिक हैं।
- इसमें बैक्टीरिया, वायरस, कवक, प्रोटोजोआ,
 परजीवी और अन्य रोगजनकों की एक विस्तृत
 विविधता शामिल है।
- जलवायु परिवर्तन, शहरीकरण, पशु प्रवास और व्यापार, यात्रा और पर्यटन, वेक्टर जीव विज्ञान, मानवजनित कारकों और प्राकृतिक कारकों जैसे कारकों ने ज़्नोस के उद्भव, पुन: उद्भव, वितरण और पैटर्न को बहुत प्रभावित किया है।
- COVID-19, संभावित चमगादड़ की उत्पत्ति की एक नई उभरती हुई जूनोटिक बीमारी जिसने विनाशकारी वैश्विक परिणामों के साथ-साथ लाखों मनुष्यों को प्रभावित किया है।
- जूनोटिक रोग रोगजनकों की एक विस्तृत श्रृंखला के कारण होते हैं।
- जूनोटिक रोग नियंत्रण और रोकथाम केंद्र (CDC)
 और इसके अमेरिकी सरकार के भागीदारों ने संयुक्त
 राज्य के लिए राष्ट्रीय चिंता के शीर्ष जूनोटिक रोगों
 को सूचीबद्ध करने वाली पहली संघीय सहयोगी
 रिपोर्ट जारी की है।
- एक जूनोसिस एक संक्रामक रोग है जो एक रोगज़नक़ (एक संक्रामक एजेंट, जैसे कि एक जीवाणु, वायरस, परजीवी या प्रियन) के कारण होता

है जो एक जानवर (आमतौर पर एक कशेरुक) से एक मानव में फैलता है।

- जूनोटिक रोग विषाणु, बैक्टीरिया, परजीवी और कवक जैसे हानिकारक कीटाणुओं के कारण होते हैं। ये कीटाणु लोगों और जानवरों में कई तरह की बीमारियों का कारण बन सकते हैं, जिनमें हल्की से लेकर गंभीर बीमारी और यहां तक कि मौत भी शामिल है।
- जूनोटिक बीमारियों हैं -
 - 1. रेबीज
 - 2. जूनोटिक इन्फ्लुएंजा
 - 3. सलमोनेलोसिज़
 - 4. वेस्ट नील विषाण्
 - 5. प्लेग
 - 6. उदीयमान कोरोनावायरस
 - 7.ब्रूसिलोसिस

Question:- निम्नलिखित में से कौन सा एक जूनोटिक रोग नहीं है?

BEST WILL

(RAS-Pre-2021)

- (1) प्लेग
- (2) रेबीज़
- (3) म्यूकोरमाइंकोसिस
- (५) एस.ए.आर.एस. (SARS)

Ans(3) म्यूकोरमाइंकोसिस

स्वास्थय - व्यक्ति की शारीरिक , मानसिक एवं पूर्णता बिना किसी रोग व दुर्बलता के स्वास्थय कहलाता है (WHO-1948) विश्व स्वास्थ्य दिवस-7 अप्रेल

Window period:- यह संक्रमण से प्रयोगशाला में संसूचित किए जाने तक का समयान्तराल होता है।

जीवाणु जनित रोग हैजा

• **जनक**- विब्रियो कॉलेरी

अध्याय - 7

अंतरिक्ष प्रौद्योगिकी एवं उपग्रह

अंतरिक्ष प्रौद्योगिकी -

अंतरिक्ष में अंतरिक्ष तकनीक से संबंधित विषयों के अंतर्गत पृथ्वी के ब्राह्म वायुमंडल के चारों ओर विद्यमान स्थल खगोलीय पिंड, इनके अध्ययन के लिए आवश्यक तकनीकें तथा अंतरिक्ष आधारित तकनीकें सम्मिलित हैं। अंतरिक्ष तकनीक के अंतर्गत मुख्य रूप से कृत्रिम उपग्रह, प्रक्षेपण यान प्रौद्योगिकी तथा अन्य सहायक प्रौद्योगिकी (एंटीना, दूरदर्शी आदि) सम्मिलित हैं।

ISRD का गठन 1969 में किया गया 1

कारमन रेखा (karman Line)

समुद्र तल से 100 किमी. ऊपर काल्पनिक रेखा को (कारमन रेखा) कहते हैं। यह रेखा आमतौर पर पृथ्वी के वायुमंडल और बाहरी अंतरिक्ष के बीच की सीमा का प्रतिनिधित्व करती है। कारमन रेखा किसी देश के वायु क्षेत्र में राजनीतिक सीमा का निर्धारण करती है। इस रेखा के ऊपर अंतरिक्ष में किसी राष्ट्र का एकाधिकार नहीं है। यह संपूर्ण मानव समुदाय की संपत्ति है।

कक्षा (Orbit)

कक्षा पृथ्वी का किसी खगोलीय पिंड के चारों ओर वह वृत्तीय पथ है, जिसमें उपग्रह परिक्रमा करते हैं। कृत्रिम उपग्रहों को कोई निश्चित कक्षाओं में स्थापित किया जाता है। पृथ्वी से दूरी उपग्रह द्वारा पृथ्वी का चक्कर लगाने में लिया गया समय तथा उपग्रह की कक्षा के झुकाव के आधार पर इन कक्षाओं का वर्गीकरण किया गया है। प्रमुख कक्षा इस प्रकार है

उपग्रहों की कक्षाएँ (Orbits of Satellites)

खगोलीय पिंड के आधार पर

• भू- केंद्रित कक्षा (Geocentric Orbit): पृथ्वी की कक्षा।

- सूर्य- केंद्रित कक्षा (Helio Centric Orbit): सूर्य की कक्षा।
- चंद्र कक्षा (Lunar Orbit): चंद्रमा की कक्षा।
- मंगल कक्षा (Mars Orbit): मंगल ग्रह की कक्षा।
 ऊँचाई के आधार पर
- निम्न भू-कक्षा (Low Earth Orbit -L.E.O)
- 🍫 ऊंचाई 200- 2000 किमी. (Approx)
- सुदूर संवेदी उपग्रह को स्थापित किया जाता है
- मध्यम भू- कक्षा (Middle Earth Orbit-M.E.O) :
- इसे भू-तुल्यकालिक कक्षा (Geosynchronous orbit) भी कहते हैं।
- 💠 ऊँचाई 36,000 किमी. (Approx)
- इस कक्षा में संचार उपग्रह, मौसम उपग्रह और क्षेत्रीय नौवहन उपग्रह को स्थापित किया जाता है।

झुकाव कोण और आकृति के आधार पर :

- ध्रुवीय कक्षा (Polar Orbit) : ध्रुवीय कक्षा में उपग्रह उत्तरी तथा दक्षिणी ध्रुव के ऊपर गुजरता है। प्रत्येक परिक्रमा में अंतरिक्ष यान पृथ्वी के ऊपर से विभिन्न बिंदुओं से गुजरता है, क्योंकि पृथ्वी स्वयं परिक्रमा कर रही होती है। ध्रुवीय कक्षा का उपयोग मुख्य रूप से वैज्ञानिक उपग्रहों के लिए किया जाता है, जो परिक्रमा करते हुए प्रतिदिन कई बार ध्रुव के ऊपर से गुजरते हैं और साथ -ही -साथ में वे प्रतिदिन पूरी पृथ्वी के चित्र भी भेज सकते हैं। इस कक्षा का झुकाव कोण लगभग 90° तथा ऊँचाई लगभग 600 किमी. होती है।
- भू-स्थैतिक कक्षा (Geostationary Orbit) : भू-स्थैतिक कक्षा में परिक्रमा कर रहा अंतरिक्ष यान प्रतिदिन पृथ्वी की एक परिक्रमा करता है। यदि यान को विषुवत् रेखा की दिशा में प्रक्षेपित किया जाए तो वह उत्तर- दक्षिण की ओर गति किए बिना स्थिर रहता है, तब इस कक्षा को भू-स्थैतिक कक्षा कहते हैं। इसका परिक्रमण काल 23 घंटे 56 मिनट और 4 सेकेंड होता है।
- भू-तुल्यकालिक कक्षा (Geosynchronous Orbit): भू तुल्यकालिक कक्षा की ऊँचाई भी लगभग 36,000 किमी. होती है, परंतु इसकी कक्षा का विषुवत् रेखा की दिशा में होना अनिवार्य नहीं है।

• सूर्य-तुल्यकालिक कक्षा (Sun-Synchronous): यह ध्रुवीय कक्षा का एक प्रकार है, जिसमें सुदूर, संवेदी उपग्रहों को स्थापित किया जाता है। उपग्रह की कक्षा का झुकाव सूर्य-पृथ्वी की रेखा से सापेक्ष सभी ऋतुओं में एक समान रहे तो इस कक्षा को सूर्य-तुल्यकालिक कक्षा कहते हैं।

प्रक्षेपण यान प्रौद्योगिकी (Launch Vehicle Technology)

उपग्रहों को उनकी कक्षा में स्थापित करने के लिए रॉकेट अथवा उपग्रह प्रक्षेपण यान की आवश्यकता होती है। यह यान तेज गति से यात्रा करके पूर्व निर्धारित कक्षा में उपग्रहों को स्थापित कर देता है। निर्धारित कक्षा में उपग्रह स्थापित करने के लिए प्रक्षेपण स्थल का चुनाव अत्यधिक महत्वपूर्ण होता है

प्रक्षेपण यान न्यूटन के गित के तीसरे नियम के आधार पर कार्य करते हैं। प्रक्षेपण यान में प्रणोदक (प्रक्षेपण यान का ईंधन) के दहन (ऑक्सीडेशन) द्वारा उत्पन्न गैसें नीचे की ओर गित करती है, जिसकी प्रतिक्रिया में प्रक्षेपण यान ऊपर की ओर गित करता है। प्रणोदक के साथ ही प्रक्षेपण यान दहन के लिए आवश्यक ऑक्सीकरण एजेंट भी अपने साथ लेकर चलता है।प्रणोदक का चुनाव उसकी प्रति इकाई द्वव्यमान ऊर्जा प्रदान करने की क्षमता, आयतन तथा संग्रहण व परिवहन की सुविधा के आधार पर किया जाता है। सामान्यतः द्वव प्रणोदक ठोस प्रणोदकों की अपेक्षा प्रति अधिक द्वव्यमान प्रदान करते हैं।

भारत के प्रमोचन यान (Launch Vehicle)

भारत के उपग्रह प्रक्षेपण यान विकास कार्यक्रम को निम्नलिखित चरणों में बाँटा जा सकता है :

प्रथम पीढ़ी के प्रमोचन यान

- परिज्ञापी रॉकेट (Sounding Rocket)
- एएसलवी (ASLV)
- एसएलवी (SLV)

प्रचलनात्मक प्रमोचन यान

- पीएसएलवी (PSLV)
- जीएसएलबी (GSLV)

अगली पीढ़ी के प्रमोयान यान

• आरएलवी (RLV)

परिज्ञापी रॉकेट (Sounding Rocket)

साउंडिंग रॉकेट एक या दो चरण वाले ठोस प्रणोदक रॉकेट हैं।इनका प्रयोग ऊपरी वायुमंडल क्षेत्रों के अन्वेषण हेतु किया जाता हैं। यह प्रमोचन यानों तथा उपग्रहों में प्रयोग हेतु निर्धारित नए घटकों या उप -प्रणालियों के परीक्षण मंचों के रूप में भी काम करते हैं। भारतीय अंतरिक्ष कार्यक्रम का प्रारंभ 21 नवंबर, 1963 कों थुंबा से अमेरिका निर्मित 'नाइक अपाचे' नामक प्रथम साउंडिंग रॉकेट के साथ हुआ। वर्ष 1965 में इसरो द्वारा थुंबा से 'रोहिणी' नामक साउंडिंग रॉकेट का प्रमोचन शुरू हुआ।

वर्तमान में 'साउंडिंग रॉकेट' के प्रचलनात्मक तीन रूप है - RH- 200, RH- 300 मार्क II तथा RH-560 मार्क III, जिनमें कि RH परिज्ञापी रॉकेट 'रोहिणी' का घोतक है और आगे के अंक रॉकेट के व्यास को सूचित करते हैं।

एसएलवी [SLV (Satelite Launch Vihicle)]

18 जुलाई, 1980 को शार केंद्र, श्रीहरिकोटा से उपग्रह प्रमोचन यान-3 (एसएलवी -3) के सफल प्रमोचन द्वारा रोहिणी उपग्रह आरएस-1 को कक्षा में स्थापित किया गया और भारत अंतरिक्ष क्षमता वाले खास राष्ट्रों के क्लब का छठा सदस्य बन गया। अगस्त 1979 में आयोजित एसएलवी -3 की पहली प्रायोगिक उड़ान आंशिक रूप से सफल रही थी। जुलाई 1980 में आयोजित प्रमोंचन के अलावा, मई 1981 और अप्रैल 1983 में एसएलवी-3 के दो और प्रमोचन किए गए, जिनके द्वारा सुदूर संवेदी संवेदकों से युक्त रोहिणी उपग्रहों को कक्षा में स्थापित किया गया।

उपग्रह प्रमोचन यान (एसएलवी -3) पहला भारतीय प्रायोगिक उपग्रह प्रमोचन यान था। 17 टन भारी 22 मीटर ऊँचे एसएलवी के सभी चार ठोस चरण थे तथा यह 40 किग्रा. वर्ग के नीतभारों को निम्न पृथ्वी कक्षा (LEO) में स्थापित करने में सक्षम था।

SLV विकास, दूरी और भार क्षमता के दृष्टिकोण से तो महत्वपूर्ण नहीं था, किंतु इसने पहली बार प्रक्षेपण

के प्रक्षेपण के लिए तकरीबन ₹10,911 करोड़ की वित्तीय सहायता प्रदान करने को मंजूरी दी है।

pslv C- 37 द्वारा 15 फरवरी , 2017 को सफलतापूर्वक 104 उपग्रह प्रमोचित किए गए 1

PSLV C-45

। अप्रैल, 2019 की सुबह भारतीय अंतरिक्ष अनुसंधान संगठन (ISRO) के प्रक्षेपण यान PSLV C-45 द्वारा एमिसैट सेटेलाइट (EMISAT) की लॉन्चिंग के साथ ही श्रीहरिकोटा के सतीश धवन अंतरिक्ष केंद्र से 28 विदेशी नैनो उपग्रहों को तीन अलग-अलग कक्षाओं में सफलतापूर्वक स्थापित किया गया।

नई तकनीक का हुआ इस्तेमाल

अमेरिका के 24, लिथुआनिया के दो और स्पेन व स्विटजरलैंड के एक-एक उपग्रहों को तीन अलग-अलग कक्षाओं में स्थापित करने के लिए इसरो ने नई प्रौद्योगिकी का इस्तेमाल किया। इसके लिए इसरो ने विश्वसनीय प्रक्षेपण यान PSLV- QR के नए प्रकार का इस्तेमाल किया । 50 मीटर लंबा यह रॉकेट अपनी पहली उड़ान में प्रक्षेपण के पहले चरण में चार स्टेप- ऑन मोटर से लैस था। यह पहली बार था, जब किसी PSLV रॉकेट ने एक बार में तीन अलग-अलग कक्षाओं मे उपग्रहों को स्थापित किया।

PSLV C-44

जनवरी 2019 में, भारतीय अंतरिक्ष अनुसंधान संगठन (Indian Space Research Organization - ISRO) ने PSLV C-44 द्वारा दो उपग्रह -माइक्रोसैट-R एवं कलामसैट- V2 को निर्धारित कक्षा में स्थापित करने में सफलता हासिल की।

प्रमुख बिंदू :

यह PSLV की उत्तम तकनीक को प्रदर्शित करता है, क्योंकि यह सिर्फ दो इंजन से संलग्न प्रथम प्रक्षेपण था, जिसे PSLV-DL नाम संबोधित किया गया।

- इस प्रक्षेपण से PSLV के सामान्य 6 स्ट्रैप ऑन बुस्टर का विकल्प प्रदान किया गया। इससे पहले की तुलना में ज्यादा पेलोड ले जाने में सफलता मिलेगी।
- माइक्रोसेंट-R एक सैन्य इमेजिंग उपग्रह है, जिसका वजन ७५० किलोग्राम है।
- इसे निचली कक्षा में स्थापित किया गया है। ऐसा पहली बार है, जब भारतीय उपग्रहों को ISRO द्वारा 274 किमी. की कम ऊँचाई वाली कक्षा में रखा गया है।

ISRD ने पृथ्वी अवलोकन उपग्रह Eos-04' का प्रक्षेपण pslv -C52 द्वारा किया गया ।

प्रक्षेपण यान की विशेषताएँ :

44 मी. ऊँचाई

2,8 मी. व्यास

चरणों की संख्या

लिफ्ट ऑफ मास -320 टन (XL)

3(PSLV-G, PSLV- CA, प्रकार

PSLV-XL)

प्रथम उडान

20 सितंबर, 1993

PSLV 1750 किग्रा. के पेलोड को सूर्य-तुल्यकालिक ध्रुवीय कक्षा में 600 किमी. की ऊँचाई पर स्थापित कर सकता है। PSLV को सतत् रूप से आई.आर.एस सीरीज के विभिन्न उपग्रहों को निम्न भ्- कक्षा में स्थापित करने के कारण से 'वर्कहॉर्स ऑफ इसरो' की पदवी प्रदान की गई है। इसके अलावा भू- तुल्यकालिक कक्षा (Geosynchronous Orbit) में यह 1425 किग्रा. के उपग्रहों को स्थापित कर सकता है। अपनी अद्भुत विश्वसनीयता के कारण PSLV का उपयोग भू- स्थिर तथा भू- तुल्यकालिक कक्षा में विभिन्न उपग्रहों के प्रक्षेपण में किया जा रहा है, जैसे - IRNSS उपग्रह को भू- तुल्यकालिक कक्षा में PSLV -27 द्वारा स्थापित किया गया है।

• पीएसएलवी के संचालन ने पृथ्वी अवलोकन, आपदा प्रबंधन, नौवहन तथा अंतरिक्ष विज्ञान आदि के लिए आवश्यक उपग्रहों को अंतरिक्ष में

इसके दूसरे चरण में थोड़ा सुधार किया गया है,ताकि उसमें स्क्रैमजेट इंजन को फिट किया जा सके | इसे एडवांस्ड टेक्नोलॉजी व्हीकल (एटीवी) नाम दिया गया है |

स्क्रैमजेट इंजन विकसित करने की दिशा में यह पहला प्रयोग है और इसमें अभी कई परीक्षण किए जाएंगे |

इस इंजन का विकास स्वदेशी पुनः उपयोगी प्रक्षेपण (आरएलवी) के लिए किया जाएगा |

• <u>उपग्रह (satellite)</u>:-

वे आकाशीय पिंड,जो ग्रहों के चारों ओर परिक्रमा करते हैं उपग्रह कहलाते है |

• चंद्रमा पृथ्वी का प्राकृतिक उपग्रह है |

उपग्रह के घटक :-

उपग्रह के मुख्य भाग को बस कहते हैं | जो घनाकार <mark>आकृति का होता है |</mark>

इसके अंदर निम्नलिखित भाग होते हैं :-

• ट्रांसपोडर :- यह एक रेडियो संकेतक हैं जिसके द्वारा जमीनी केंद्र और उपग्रहों के बीच संचार संपर्क स्थापित किया जाता है।

यह एंटीना और राडार के द्वारा माइक्रोवेव तरंगों के माध्यम से संकेतों का आदान प्रदान करता है जिसे टेलिमेट्री कहते हैं |

• तरल ईंधन एवं मोटर :- इसकी सहायता से ग्रह आवश्यक प्रणोद पैदा कर कक्षीय विचलन को ठीक करता है तथा अपने आप को प्रत्येक कक्षा में बनाए रखता है |

इलेक्ट्रॉनिक सर्किट तथा कंप्यूटर:- इसके द्वारा उपग्रह अपने सभी यंत्रों के बीच समन्वय और नियंत्रण स्थापित करता है।

नीतभार :- यह उपग्रह का सर्वप्रमुख कार्यात्मक भाग है,जिसके द्वारा उपग्रह किसी विशिष्ट संदर्भ के आंकड़ों को प्राप्त कर जमीनी केंद्रों को उपलब्ध कराता है।

जैसे :-

उपग्रह नीतभार

सुदूर संवेदी कैमरा तथा राडार

नौवहन नोवहन संकेतक तथा परमाणु

घड़ी

संचार द्रांसपोंडर

मौसम साउंडर तथा इमेजर

घुर्नाक्षदर्शी:- इसके द्वारा किसी वस्तु की कोणीय स्थिति की माप की जाती है । इसकी क्रिया विधि कोणीय संवेग संरक्षण के सिद्धांत पर आधारित है । घुर्नाक्षदर्शी उपग्रहों की स्थिति,गति,झुकाव से संबंधित आंकड़ों को उपलब्ध कराता है । यह चुंबकीय सुई की अपेक्षा अधिक सूक्ष्ममापी भी होते हैं जिसके कारण अंतरमहाद्वीपीय बैलिस्टिक प्रक्षेपास्त्र एवं रेडियो नियंत्रित हेलीकॉप्टरों आदि में इसका उपयोग किया जाता है ।

उपग्रहो के प्रकार:-

कक्षाओं के आधार पर उपग्रहों का वर्गीकरण :-

निम भू-कक्षीय उपग्रह:- इस प्रकार के उपग्रह सामान्यतः एक अंडाकार कक्षा में लगभग 200 से 2000 किमी की सीमा में कार्य करते हैं वर्तमान में अधिकांश प्रकार्यात्मक इसी श्रेणी में आते हैं।

सूर्य तुल्यकालिक कक्षीय उपग्रह :- इस तरह के उपग्रह निकट - वृत्तीय ध्रुवीय कक्षा में उत्तर से दक्षिण की ओर चलते हुए एक निश्चित ऊंचाई (लगभग 500- 1000 कीमी) पर अपना कार्य करते हैं | पी.एस.एल.वी. द्वारा प्रक्षेपित भारतीय सुदूर संवेदन उपग्रह इसी वर्ग में आते हैं |

भू-स्थैतिक उपग्रह :- यह उपग्रह एक वृत्ताकार विषुवतीय कक्षा में लगभग 36000 किमी की निश्चित ऊंचाई पर 24 घंटे में एक बार पृथ्वी की परिक्रमा करते हैं चूँकि प्रथ्वी भी अपनी धुरी पर इतने समय पर परिभ्रमण करती है अतः यह ग्रह स्थिर प्रतीत होते हैं इंसेट श्रेणी के संचार उपग्रह इसी वर्ग में आते हैं।

अनुप्रयोग के आधार पर उपग्रहों का वर्गीकरण :-

• सुदूर संवेदन

क्वांटम डॉट्स :

- एक क्वांटम डॉट नैनोस्केल पर एक अर्धचालक है।
- नैनोस्केल सेमीकंडक्टर सामग्री के लिए एक विद्युत क्षेत्र या हल्के दबाव को लागू करके, वे एक आवृत्ति पर प्रकाश का उत्सर्जन करते हैं जो अर्धचालक के आकार के साथ बदलता रहता है।
- नैनोस्केल सेमीकंडक्टर के आकार को ट्यून करके,
 उत्सर्जित प्रकाश के रंग को नियंत्रित किया जा सकता है। इस नैनोस्केल सेमीकंडक्टर में इलेक्ट्रॉनों और इलेक्ट्रॉन छिट्ठों को सीमित करने का गुण होता है। यह संपत्ति प्रकृति में परमाणुओं या अणुओं के समान है और इसलिए इसे क्वांटम डॉट कहा जाता है।
- यदि अर्धचालक कणों को आकार में बहुत छोटा बना दिया जाए तो इनमें क्वांटम प्रभाव क्रियाशील हो जाता है। इसके क्रियाशील होते ही वह ऊर्जा सीमित हो जाती है, जिसकी वजह से एक इलेक्ट्रॉन तथा उतनी ही खाली जगह किसी कण में बनी रहती है। इसका कारण यह है कि ऊर्जा तरंगदेर्ध्य से जुड़ी होती है। इसलिए किसी कण की प्रकाशकीय विशेषता क्या होगी, यह कण के आकार पर निर्भर करेगा। इस प्रकार मात्र आकार को नियंत्रित करके ऐसे कणों का निर्माण किया जा सकता है, जो प्रकाश के विशिष्ट तरंगदेर्ध्य को उत्सर्जित कर सकते हैं।

प्रश्न - क्वांटम डॉट्स है -

- 1) अर्द्ध चालक नैनो सरंचना
- 2) एक कल्पित नैनो रोबोट
- 3) । नैनोमीटर से छोटी नैनो सरंचनाओं का इलेक्ट्रोन सुक्षम्दर्शी प्रतिबिम्ब
 - 4) रेडियो एंटीना का नैनो स्केल अनुरूप

(RAS Pre. 2021)

ऑप्टिकल बाइस्टेबल स्विच: हैलो बैक्टीरियम हेलोब्रियम नामक जीवाणु की झिल्ली द्वारा एक परत वाले ऑप्टिकल बाइस्टेबल स्विच बनाने में सफलता प्राप्त हुई है, जो 10,000 अणु प्रति बिट की दर से 500 फेफ्टोसेकेण्ड (1 नैनो सेकेण्ड का 1/ 2000) में ऑकड़े संग्रहित कर सकता है।

फुलेरीन (Fullerene) :यह कार्बन का एक बहुउपयोगी जटिल रूप है, जिसमें कार्बन परमाणु पंचभुजाकार अथवा षटफलाकार रूप में परस्पर जुड़कर एक पिंजरेनुमा संरचना का निर्माण करते हैं। बकमिनिस्टर, फुलेरीन का बहुरूप है, जिसका हर एक अणु कार्बन 60 के परमाणुओं का एक गोलाकार समूह होता है। इसे कार्बन 60 द्वारा निरूपित किया जाता है। फुलेरीन रासायनिक रूप से स्थायी एवं अक्रियाशील होते हैं। पिंजरे सरीखी संरचना को तोड़ने के लिए अत्यधिक तापक्रम (लगभग 10000° C) की आवश्यकता होती है।

शुरुआती समय में लेसर किरणों द्वारा ग्रेफाइट के वाष्पीकरण से फुलेरीन प्राप्त किया गया। इस विधि में ग्रेफाइट को हीलियम अथवा ऑर्गन की उपस्थिति में विद्युत आर्क में गर्म करने से कार्बन के वाष्प संघनन से फुलेरीन के सूक्ष्म अणु कालिख पदार्थ के रूप में उत्पन्न होते हैं। ये कार्बन विलायकों में घुलनशील भी होते हैं।

भविष्य में फुलेरीन के विभिन्न क्षेत्रों में उपयोग की अपार संभावनाएं हैं। यह कई धातुओं के साथ अशुद्ध होकर निम्न तापक्रम पर अतिचालक बन जाता है। कार्बन के नैनो ट्यूब बेलनाकार फुलेरीन हैं, जिनके इस्तेमाल से पेपर बैटरी बनाई गई है। पेपर बैटरी का प्रयोग संभवतः स्वचालित वाहनों, वायुयानों एवं पेसमेकर में किया जा सकता है। ग्रेफाइट से फुलेरीन एवं कार्बन नैनो ट्यूब बनाए जाने के कारण ये काफी महँगे होते हैं, इसीलिए भारतीय वैज्ञानिकों द्वारा भारत में कोयले से अकार्बनिक अशुद्धियों को पूरी तरह से दर करके इसे विकसित किया जा रहा है।

डेंड्राइमर : ये वस्तुतः नैनो पर बने रासायनिक बहुलक हैं। इनमें परमाणु एक केन्द्रीय कोर से शाखाओं तथा उपशाखाओं में संश्लिष्ट होता है। डेंड्राइमर का निर्माण करने के लिए किसी भी एक तत्व जैसे कि नाइट्रोजन का कोई आरंभिक परमाणु ले लिया जाता है और रासायनिक क्रिया की पुनरावृत्ति द्वारा इसके साथ किसी अन्य तत्व जैसे कि कार्बन के परमाणुओं को जोड़ दिया जाता है, ताकि इसके एक गोलाकार शाखान्वित बनाई जा सके। डेड्राइमर के अणु की मुख्य विशेषता यह होती

नोट - प्रिय उम्मीदवारों, यहाँ हमने केवल SAMPLE ही दिया है, पूरा टॉपिक नही दिया है / यदि आपको हमारे नोट्स के सैंपल अच्छे लगे हों तो कम्पलीट नोट्स खरीदने के लिए नीचे दिए गये हमारे संपर्क नंबर पर कॉल कीजिए या लिंक पर क्लिक करें / दोस्तों, हमें पूर्ण विश्वास है कि ये नोट्स आपकी "RPSC RAS (PRE.)" की परीक्षा_ में पूर्ण संभव मदद करेंगे और आप "INFUSION NOTES" के साथ इस परीक्षा में जरूर सफल होंगे, धन्यवाद /

RAS Pre. 2021 की परीक्षा में हमारे नोट्स में से 74 प्रश्न आये थे , जबकि cutoff मात्र 64 प्रश्न पर गयी थी /

संपर्क करें - 8233195718, 8504091672, 9694804063, 7014366728, प्रिय दोस्तों, अब तक हमारे नोट्स में से अन्य परीक्षाओं में आये हुए प्रश्नों के परिणाम -

EXAM (परीक्षा) WHEN	DATE LY THE BES	हमारे नोट्स में से आये हुए प्रश्न
RAS PRE. 2021	27 अक्तूबर	74 प्रश्न आये
REET (लेबल -1, 2)	2021	98 (150 में से)
SSC GD 2021	16 नवम्बर	68 (100 में से)
SSC GD 2021	30 नवम्बर	66 (100 में से)
SSC GD 2021	01 दिसम्बर	65 (100 में से)
SSC GD 2021	08 दिसम्बर	67 (100 में से)
राजस्थान ऽ.।. 2021	13 सितम्बर	113 (200 में से)

whatsapp-https://wa.link/6r99q8 1 website- https://bit.ly/ras-pre-notes

3 - 74 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1	CO 1800	THE FAMILANE FAMILA
राजस्थान ऽ.।. 2021	14 सितम्बर	119 (200 में से)
राजस्थान ऽ.।. 2021	15 सितम्बर	126 (200 में से)
RAJASTHAN PATWARI 2021	23 अक्तूबर (Ist शिफ्ट)	79 (150 में से)
RAJASTHAN PATWARI 2021	23 अक्तूबर (2 nd शिफ्ट)	103 (150 में से)
RAJASTHAN PATWARI 2021	24 अक्तूबर (Ist शिफ्ट)	95 (150 में से)
RAJASTHAN PATWARI 2021	24 अक्तूबर (2nd शिफ्ट)	91 (150 में से)
RAJASTHAN VDO 2021	27 दिसंबर (1 st शिफ्ट)	59 (100 में से)
RAJASTHAN VDO 2021	27 दिसंबर (2 nd शिफ्ट)	61 (100 में से)
RAJASTHAN VDO 2021	28 दिसंबर (1st शिफ्ट)	56 (100 में से)
RAJASTHAN VDO 2021	28 दिसंबर (2nd शिफ्ट)	57 (100 में से)
U.P. 51 2021 WHEN	14 नवम्बर 2021 🗈 शिफ्ट	91 (160 में से)
U.P. SI 2021	21नवम्बर2021 (1 st शिफ्ट)	89 (160 में से)

& Many More Exams like REET, UPSC, SSC Etc.

दोस्तों, इनका proof देखने के लिए नीचे दी गयी लिंक पर क्लिक करें या हमारे youtube चैनल पर देखें –

RAS PRE. 2021 - https://www.youtube.com/watch?v=p3_i-3qfDy8&t=136s

VDO PRE. - https://www.youtube.com/watch?v=gXdAk856W18&t=202s

Patwari - https://www.youtube.com/watch?v=X6mKGdtXyu4&t=103s

अन्य परीक्षाओं में भी इसी तरह प्रश्न आये हैं Proof देखने के लिए हमारे youtube चैनल (Infusion Notes) पर इसकी वीडियो देखें या हमारे नंबरों पर कॉल करें। संपर्क करें- 7014366728, 8233195718, 9694804063, 8504091672

ONLINE ORDER के	Website-
लिए OFFICIAL	https://bit.ly/ras
WEBSITE	<u>-pre-notes</u>
PHONE NUMBER	+918504091672
INFL	9887809083 +918233195718 EST WILL DO
TELEGRAM	https://t.me/infusion_notes
FACEBOOK PAGE	https://www.facebook.com/infusi on.notes
WHATSAPP करें	https://wa.link/6r99q8